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INTRODUCTION

In radiation transport problems, uncertainty quantification
(UQ) can be used to characterize and propagate the effects
of uncertain input parameters; we refer to this variance
caused by uncertain parameters as parametric variance. Monte
Carlo (MC) sampling is one method to obtain statistics of
the system’s quantities of interest (QoIs) that we wish to
evaluate with UQ. In the case of a QoI obtained from Monte
Carlo radiation transport (MC RT) computations, UQ MC
sampling can function as a wrapper around the MC RT
solver. MC RT solvers produce results whose variance is
inversely proportional to the square root of the number of
particle histories used; we refer to this variance as statistical
variability. Though increasing the number of particle histories
will decrease this statistical variability, it is often necessary
to control the growth of the overall computational burden by
limiting the number of particle histories used in each MC RT
computation. In this contribution, we show how the statistical
variability from this limited number of particle histories
propagates to the variance of the QoI, compounding with the
parametric variance, and that this increase must be accounted
for to obtain reliable UQ results. We named this process
–estimating and removing the MC RT statistical variability
from the measured total variance –variance deconvolution.

Recently, we developed a novel variance deconvolution
estimator which uses tallies already generated during MC
RT computations to accurately and efficiently estimate the
parametric variance, without carrying the contribution of the
statistical variability [1]. Preliminary results suggested that
the most efficient variance estimator can be obtained for given
computational cost by using specific numbers of UQ samples
and particle histories. In this work, we present thorough
numerical studies for RT problems with and without scattering
to further develop our understanding of how this trade-off
affects estimator performance.

VARIANCE DECONVOLUTION

We first develop some background on the variance
deconvolution estimator following the presentation in [1]. In
the case of a general RT problem, the quantity of interest
Q can be understood as a function of a vector of d input
parameters, ξ ∈ Ξ ⊆ Rd. Several code evaluations can be
performed for values of ξ sampled from the joint probability
density function p(ξ). These samples are then used to evaluate
the desired statistics, e.g. mean and variance. The interested
reader can refer to [2] for an in depth presentation of MC
sampling estimators or [3] for an in depth review of MC RT.
The non-deterministic behavior of MC RT codes provides a
challenge to this process. Each UQ realization Q(ξ(i)) from an
MC RT code is the result of an averaging over a finite number

of particle histories. If we use f (ξ(i), η( j)) to indicate the jth
particle history corresponding to the ith sample, the QoI can
be approximated as

Q(ξ(i)) def
= Eη

h
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i
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f (ξ(i), η( j)) def
= Q̃(ξ(i)), (1)

where Nη indicates the number of particle histories per
parameter sample and Eη [·] is a shorthand to indicate the
expected value over realizations drawn with respect to the
variable η. We note here that η is used here only to notionally
represent the MC RT stochastic behavior and that its value
may not be, in general, controllable or known.

Straightforward computation of the parametric variance
from the samples of Q̃ unfortunately does not yield accurate
results. Instead, the limited number of particle histories
Nη embeds a statistical variability that propagates to the
measurable variance of Q̃. Although Varξ[Q̃]→ Varξ[Q] as
Nη → ∞, we want to understand how to accurately compute
the parametric variance of Q̃ using a limited, and possibly
small, number of histories Nη. This result can be obtained
rigorously by applying the Law of Total Variance to Var[Q̃] ,
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where σ2
η is defined as the variance of the histories over Nη

for each fixed UQ parameter, i.e. σ2
η(ξ)

def
= Varη[ f (ξ, η)], and

σ2
RT,Nη

(ξ) def
= σ2

η(ξ)/Nη is the corresponding MC RT solver
variance [1]. The expression above relates the true parametric
variance of the QoI, Varξ[Q], and the expected value (over
the parameter space) of the statistical variability introduced by
the MC RT computations, σ2

RT,Nη
. Both terms contribute to the

total variance Var[Q̃], the only variance directly observable
from numerical experiments.

Practical implementation

As previously discussed, the QoI Q can only be
approximated with Q̃, the variance of which can be considered
to be polluted by the MC RT statistical variability. On the
other hand, Q̃ can be re-evaluated for several samples of ξ,
makingVarξ[Q̃] an accessible quantity; unlikeVarξ[Q], it can
be directly estimated by taking the variance over the number of
UQ samples Nξ. Similarly, given multiple particle histories per
UQ sample, it is possible to estimate the term σ2

η = Varη[ f ] at
each ith UQ parameter location, and therefore estimate σ2

RT,Nη
.

The true parametric variance can then be obtained.
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As Var[Q̃] and Eξ[σ2
RT,Nη

] are exact only at the limit of
infinite Nξ, a sample estimator counterpart of the variance
deconvolution in Equation 2 is necessary,

Varξ [Q] ≈ S 2 = S̃ 2 − µ̂σ2
RT,Nη
, (3)

where S 2 and S̃ 2 represent the sample estimators for the
true parametric (i.e. inaccessible) and polluted variances,
respectively, and µ̂σ2

RT,Nη
indicates the sample mean of the MC

RT variance over Nξ. Assuming the tallies of each particle
history are accessible, we can define the two estimators as
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where the term σ2
η is approximated, for each ith UQ sample,

with an additional sample variance estimator
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By solving for S̃ 2, σ2
η, and µ̂σ2

RT,Nη
, we can calculate S 2, and

estimate of Varξ[Q]. Ref. [1] shows that S 2 is an unbiased
estimator for Varξ[Q].

The idea of the variance deconvolution, in RT
applications, was previously introduced in [4] and presented
in the context of an embedded UQ strategy dubbed Embedded
VAriance DEconvolution (EVADE). Moreover, EVADE has
been successfully adopted in RT computations in the presence
of stochastic media, as in [5]. The original EVADE estimator
presented in [4] was derived for an approximation of Q̃
obtained with a single particle history. The interested reader
can refer to [1] for an in depth discussion of the relationship
between the two estimators and numerical comparisons. Both
estimators are unbiased, although the variance of the newer
estimator summarized thus far is smaller in all analysis
scenarios we have considered.

In the present work, we significantly extend our
understanding of the deconvolution strategy by investigating
the trade-off between the number of UQ samples Nξ and the
number of particle histories Nη. Because only one history was
used to calculate the total polluted variance in the original
EVADE estimator, the variance of an estimate of S 2 using
a prescribed estimator cost C = Nξ × Nη was minimized
when the lowest possible number of particle histories was
used. Preliminary results from [1] found that the minimum
variance of the newer estimator did not necessarily correspond
to the minimum number of histories in the tested problem.
To investigate this, we performed numerical studies varying
the ratio of Nη to Nξ for a prescribed estimator cost for a
given problem, results of which are discussed in the numerical
section.

PROBLEM DESCRIPTION

A short description of the problem used in the numerical
investigation follows. We consider the stochastic, one-
dimensional, neutral-particle, mono-energetic, steady-state
radiation transport equation with a normally incident beam
source of magnitude one. The slab has fixed boundaries,
i.e. x ∈ [0, L], and contains a total of M material sections
separated by fixed boundaries. The problem is solved both
as an attenuation-only problem and with isotropic scattering
included. For both scenarios, the stochastic total cross section
of each material is assumed to be uniformly distributed. In
the scenario which includes scattering, the ratio c = Σs/Σt of
scattering to total cross section is distributed uniformly and
independently of Σt. For each region m, Σt and c are defined
using

Σt,m(ξm) = Σ0
t,m + Σ

∆
t,mξm (6a)

cm(ξm) = c0
m + c∆mξm (6b)

where ·0 represents the average value and ·∆ the deviation from
the mean. Furthermore, a random parameter ξm ∼ U[−1, 1]
is used to represent the variability of Σt,m(ξ) ∼ U[Σ0

t,m −

Σ∆t,m,Σ
0
t,m + Σ

∆
t,m]. For cases with scattering, the scattering

ratio cm is defined analogously. In the attenuation-only case,
the number of uncertain parameters is equal to the number of
materials, i.e. ξ ∈ Rd with d = M, whereas in the case of both
attenuation and scattering d = 2M.

For the attenuation-only case, the estimate S 2 can be
compared to its analytic counterpart. By using the pth raw
moment for the transmittance, as shown in [4],

E[T p] =
dY

m=1

exp
h
−pΣ0

t,m∆xm

i sinh
h
pΣ∆t,m∆xm

i
pΣ0
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, (7)

the parametric variance can be obtained as Var[T ] = E[T 2] −
E[T ]2. It is also possible to compute the variance Eξ[σ2

RT,Nη
] in

closed form for this problem, using σ2
RT,Nη

=
T (ξ)
Nη

(1 − T (ξ)).

NUMERICAL RESULTS

In this section, we present the performance of the
described variance estimator for two UQ analysis scenarios,
attenuation-only and attenuation with scattering. We consider
a 1D slab with 3 material sections1, and report in Table I
the right boundary location, average total cross section,
and deviation from the cross section mean for each of the
material sections for both problems, as well as the analogous
information for the scattering ratio for the isotropic scattering
problem. In Table II, we report the mean QoI and parametric
variance computed with closed-form solutions where available;
numerical benchmark solutions with Nη = 105, Nξ = 103

(C = 108); and using one typical repetition of our variance
deconvolution method with Nη = 101, Nξ = 103 (C = 104),
for reference2.

1The approach can be extended to higher number of sections without any
modifications to the algorithm.

2Note that for the deconvolved results, this is only one realization of a
stochastic problem, which converges to the benchmark over many repetitions.



TABLE I. Problem parameters.
Problem Parameters Scattering Parameters

xR Σ0
t,m Σ∆t,m c0

s,m c∆s,m
m = 1 2.0 0.90 0.70 0.50 0.40
m = 2 5.0 0.15 0.12 0.50 0.40
m = 3 6.0 0.60 0.50 0.50 0.40

TABLE II. Mean QoI and parametric variance. Numerical
benchmark computed with Nη = 105, Nξ = 103 (C = 108);
variance deconvolution computed with Nη = 101, Nξ = 103

(C = 104); and closed-form solutions where available.
Attenuation Only

Benchmark Deconvolved Analytic
E[T ] 8.915E-2 8.870E-2 8.378E-2
S 2

T 5.789E-3 5.768E-3 5.505E-3
Scattering

Benchmark Deconvolved -
E[T ] 1.299E-1 1.209E-1 -
S 2

T 9.710E-3 9.825E-3 -
E[R] 1.386E-1 1.336E-1 -
S 2

R 8.251E-3 7.703E-3 -

To better understand where the variance of the novel
estimator is minimized, we solve the described RT problem
using Woodcock-delta tracking with analog Monte Carlo
methods for an estimator cost C = Nξ × Nη of 200, 500, 1000,
1500, 2000, and 5000 for a variety of Nη values. We repeat
the estimator evaluation over 25,000 repetitions to evaluate
its statistics. We report Var[S 2] for both the attenuation-only
and isotropic scattering case, where S 2 = Var[T ] or Var[R],
in Table III. The exact parametric variance is calculable for
the attenuation-only case, so we also compare the estimate of
S 2 for the attenuation-only case to the analytic solution using
Mean Square Error (MSE), which we also report in Table III.

For the attenuation-only case, we see that Var[S 2] first
decreases as a function of Nη, reaches its minimum at Nη = 10,
then gradually increases again. We only report up values up
to Nη = 100, because after this Var[S 2] just continues to
increase. The varied Nη value is the number of histories per
sample, meaning that even in the case where Nη = 2, the
actual QoI (transmittance, reflectance) is still being calculated
over the full estimator cost. To better see the trend, Figure 1
shows Var[S 2] as a function of Nη on a log-log scale for the
attenuation-only case. We can see clearly here that Var[S 2] is
not minimized by running with the lowest possible number of
histories, and a tradeoff does indeed exist between the number
of UQ samples Nξ and the number of particle histories Nη;
this is not the case for the previous estimator in [1] with most
problems. We can see the same trend in the isotropic scattering
case, and when S 2 = Var[T ], Var[S 2] is also minimized at
Nη = 10.

We see a similar trend for the isotropic scattering problem
where S 2 is Var[R], the parametric variance of the reflectance
tally. However, in this case Var[S 2] is minimized at Nη =
20, rather than Nη = 10. While both transmittance and
reflectance are influenced by the addition of scattering and

Fig. 1. Var[S 2] as a function of Nη for a variety of total
estimator costs, log-log plot. Unfilled point is minimum
Var[S 2].

the stochastic scattering ratio, the reflectance tally is likely
more sensitive to this scattering ratio, and requires more
radiation transport tallies to resolve than the transmittance tally.
This demonstrates that the optimal number of Nξ and Nη can
differ between different QoIs even within the same problem,
motivating further investigation to allow the analyst to choose
these parameters in an informed way. Figure 2 compares
the trends for the attenuation-only estimate of Var[T ] to the
isotropic scattering estimate of Var[T ] and Var[R].

Fig. 2. Var[S 2] as a function of Nη for the attenuation-only
and scattering cases. Log-log plot, estimator cost Nξ × Nη =
2000. Unfilled point is minimum Var[S 2].

CONCLUSIONS AND FUTURE WORK

For a stochastic radiation transport problem solved using
MC RT methods, simply performing uncertainty quantification



TABLE III. The variance (and MSE, where applicable) of the estimate of S 2 over 25,000 repetitions for both the attenuation-only
and scattering problems.

Attenuation-Only Problem
Var[S 2] MS E[S 2] (Exact Var[T ] = 5.505E − 3)

Nη
Estimator Cost

Nη
Estimator Cost

200 500 2000 5000 200 500 2000 5000
2 9.584E-05 3.887E-05 9.626E-06 3.879E-06 2 1.332E-10 9.106E-13 3.176E-11 5.565E-11
5 3.970E-05 1.597E-05 3.907E-06 1.586E-06 5 1.119E-09 3.600E-14 3.734E-11 4.169E-11

10 3.241E-05 1.303E-05 3.168E-06 1.297E-06 10 7.155E-10 2.692E-10 5.997E-12 1.308E-11
20 3.568E-05 1.414E-05 3.482E-06 1.384E-06 20 2.576E-10 1.026E-10 8.893E-12 4.168E-11

100 1.327E-04 3.866E-05 9.218E-06 3.656E-06 100 3.678E-10 6.301E-09 1.424E-10 3.323E-11
Scattering Problem

Var[S 2], Transmittance Var[S 2], Reflectance

Nη
Estimator Cost

Nη
Estimator Cost

200 500 2000 5000 200 500 2000 5000
2 1.730E-04 6.921E-05 1.749E-05 6.996E-06 2 1.786E-04 7.085E-05 1.770E-05 7.140E-06
5 7.664E-05 2.963E-05 7.424E-06 2.882E-06 5 6.574E-05 2.592E-05 6.392E-06 2.591E-06

10 6.329E-05 2.461E-05 6.175E-06 2.488E-06 10 4.792E-05 1.852E-05 4.586E-06 1.861E-06
20 7.360E-05 2.775E-05 6.852E-06 2.753E-06 20 4.656E-05 1.758E-05 4.303E-06 1.694E-06
25 8.090E-05 3.102E-05 7.499E-06 3.012E-06 25 4.963E-05 1.836E-05 4.371E-06 1.771E-06
100 2.987E-04 8.572E-05 1.897E-05 7.456E-06 100 1.661E-04 4.169E-05 8.476E-06 3.241E-06

with MC sampling would over-estimate the parametric
variance; it fails to consider that the total variance has been
polluted by the statistical variability of the MC RT solver.
In [1], we developed a novel variance deconvolution method
which estimates the parametric variance of a QoI by removing
this statistical variability from the polluted total variance.
Preliminary numerical investigations showed that the variance
of this estimate of parametric variance could be minimized by
optimizing the ratio of UQ samples Nξ to particle histories Nη,
providing the most accurate estimate for a given computational
cost.

In this work, we performed numerical studies for an
attenuation-only and isotropic scattering problem over a range
of total computational costs, using Woodcock-delta tracking
with analog Monte Carlo. We found that the variance of the
estimate of Var[T ] followed a consistent trend of decreasing
as Nη increased, reaching a minimum, then increasing again,
for the problem defined with and without scattering. In
both the attenuation-only and scattering cases, this minimum
was at Nη = 10 across all tested costs. A similar trend
was observed in the isotropic scattering case for a QoI of
reflectance, though the minimum was at Nη = 20. Though
further investigation is needed, these studies allow us to better
understand how to apply this variance deconvolution method
for the most accurate estimate of parametric variance. As we
continue developing this estimator, we hope to corroborate
these numerical findings with an analytic, closed-form solution
for the variance of the estimate of Var[S 2].
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