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Decoding Auditory Tones from Brain Signals Recorded using OPM-
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P J 6-fold cross validation was used. Fig 3. Time-locked, i.e. trial averaged, tonotopy response for a single subject

Discussion & Next Steps Future Works

J Collect imagined and overt speech data for

1 The average performances for the X and Y tangential components were 62% and 52%, respectively. J This work provides empirical evidence decoding analysis

Both accuracies were significantly above chance level (33%). that our newly developed OPM-MEG A Closed-vocabulary decoding performance using
system can decode tone information OPM-MEG signals and compare to that using
from brain Signals. traditional SQUID-MEG [1]

J Open-vocabulary decoding

d Similar auditory tone decoding performance was robust across all features using LDA (Fig 4) and for
the five selected classifiers (Fig 5).
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