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Introduction

 The ability to sense and identify individual gaseous pollutants from the complexity of 
the environment requires highly selective materials

Avoidance of interference from real‐world air components
 Current conductivity‐based devices generally fall into two categories:

− Solid state – (oxide based) require higher temperatures (>200°C) for interaction of the gas 
with the surface oxides; heating devices are needed

− Fuel cell – room temperature liquid electrolyte, easily fouled, short lifetime
 Electrical metal organic framework (MOF) based sensors have previously been used 

for direct electrical sensing of gases; however, none for NO2 have been reported in 
open literature

 By tuning the composition of MOFs, selective chemical adsorption and/or catalysis can 
be achieved

 Typical sensors for this application are hard‐wired or require frequent battery 
replacement–nanoporous MOFs allows for “near‐zero” long lived sensing in a wider 
range of environments
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Direct Electrical Readout Sensors Combined with 
Nanoporous Adsorption Materials

 Composed of Pt interdigitated electrodes (IDEs) with 
a nanoporous adsorbent layer 

 Nanoporous adsorption materials chosen for ability to 
selectively adsorb target gas molecules

 Electrical readout sensor of this design: 
─ Decreased power consumption
─ Ability to interrogate for specified gases selectively in 

real‐time or as an integrating sensor for delayed/later 
testing
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 Design of an integrated sensor:
─ Record whether any degradation product was ever present during the 

sensor’s lifetime
 Integrated sensor is useful in cases where degradation products may:

─ Subsequently react with other components,
─ Gradually leak out of the system



Nanoporous Materials Targeted for the Selective 
Adsorption of NOx

Durable nanoporous adsorbents with selectivity for NOx at low temperatures (near 
ambient)
 Zeolites are aluminosilicates with high temperature durability. Specific metals give rise to  NOx 

selectivity 
 Metal‐organic frameworks (MOFs) are metal nodes with organic linkers with selectivity to NOx 

designed by incorporating NOx –friendly metals into the framework

4

Zeolite SSZ-13
(CHA)

Metal-organic framework
M-DOBDC (M = Y, Yb, Eu, Tb)

M-MOF-74 (M = Co, Mg, Ni)

http://europe.iza-structure.org/IZA-SC/framework_main_image.php?STC=CHA


M-MOF-74-Based Sensors for the Selective 
Adsorption of NOx 

 M‐MOF‐74 (M= Co, Mg, Ni) was targeted for its selectivity to NO2

 MOF‐74 materials were synthesized and investigated as bulk 
materials and dropcast onto an interdigitated electrode (IDE) 

 Each powder pattern highlighted two primary diffraction peaks 
corresponding to the MOF pore (intensities reduced for dropcast 
samples, with the large peak corresponding to the platinum IDE)
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Powder XRD patterns for Mg‐MOF‐74 dropcast onto IDE pre‐
NO2 (blue) and post‐NO2 (orange). Inset: zoomed in region 
compared to bulk powder Mg‐MOF‐74.

Powder XRD patterns for as‐synthesized MOF‐74 
in the bulk phase. 

PtGlass

Small et al.,  “Near-Zero Power MOF-Based Sensors 
for NO2 Detection,” Adv. Funct. Mat., 50, 2020, 
2006598.



SEM Characterization of Dropcast M-MOF-74 Films

 Co‐ and Ni‐MOF‐74 contained a wide range of crystallite sizes, from 100’s of 
µm to 100 nm

 Mg‐MOF‐74 crystallites were on the order of 100 nm

 Film thickness was ~ 10 µm
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Plan‐view SEM micrographs of (A) Co‐MOF‐74, 
(B) Mg‐MOF‐74, (C) Ni‐MOF‐74 powders 
dropcast onto IDEs. (D) Cross‐sectional 
micrograph of Ni‐MOF‐74 film from (C).  

Small et al.,  “Near-Zero Power MOF-Based Sensors 
for NO2 Detection,” Adv. Funct. Mat., 50, 2020, 
2006598.



NOx Exposure and In Situ Electrical Testing

 Custom‐ built NOx exposure chamber 
enabled MOF activation and subsequent 
in situ electrical testing under varying NO2 
concentrations without exposure to lab 
atmospheres

 Variable NO2 concentrations (0.5‐5 ppm) 
were achieved by diluting 5 ppm NO2 gas 
stream with pure UHP N2 at 500 sccm total 
gas flow 

 Impedance spectra recorded at 0 V DC and 
100 mV (RMS) AC over 1 MHz ‐ 10 mHz

 All electrical measurements and NO2 
exposures occurred at 50°C
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Small et al.,  “Near-Zero Power MOF-Based Sensors 
for NO2 Detection,” Adv. Funct. Mat., 50, 2020, 
2006598.



8
Typical Impedance Responses of M-MOF-74-
Based Sensors

Example impedance spectra for Ni‐
MOF‐74‐based sensor

Ratio of response as‐activated to NO2‐exposed for 
(1) impedance magnitude (|Zactivated|/|ZNO2|) at 100 
mHz and (2) MOF DC film resistance (Ractivated/RNO2) 
for IDEs coated with M‐MOF‐74 (M= Co, Mg, Ni).  

Exposed M‐MOF‐74‐based sensors to 5 ppm NO2 for 8 h at 50°C.

Small et al.,  “Near-Zero Power MOF-Based Sensors for 
NO2 Detection,” Adv. Funct. Mat., 50, 2020, 2006598.



Impedance Responses as a Function of NO2 
Concentration

 Blank IDEs and IDEs coated in M‐
MOF‐74 (M= Co, Mg, Ni) were 
activated and exposed to alternating 
0.75 h flows of pure N2 or N2 
containing trace NO2, while 
impedance was constantly measured 
at 100 mHz

 Magnitude of electrical response is 
ordered Ni > Co > Mg  

− Explained by each variant’s NO2 
adsorption capacity and specific 
chemical interaction

 Use of Ni‐MOF‐74 provided the 
highest sensitivity to NO2, with a 
725 decrease in resistance at 5 
ppm NO2 and a NO2 detection limit 
<0.5 ppm 
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Small et al.,  “Near-Zero Power MOF-Based Sensors for 
NO2 Detection,” Adv. Funct. Mat., 50, 2020, 2006598.



NO2 Selectivity for a Ni-MOF-74-Based Sensor 10

 A Ni‐MOF‐74‐based sensor was activated and exposed to 5 ppm SO2 in N2, and ambient air 
(25 C, 50% RH, 400 pm CO2) heated to 50 C, and its response compared to previous 
exposures to 5 ppm NO2 in N2

 An extended air exposure (96 hours) followed by subsequent NO2 exposure was also 
performed

 The Ni‐MOF‐74‐based sensor demonstrated selectivity to NO2 versus N2, SO2, and air.  

Small et al.,  “Near-Zero Power MOF-Based Sensors for 
NO2 Detection,” Adv. Funct. Mat., 50, 2020, 2006598.



Enhanced Sensitivity of Nanoporous-Based 
Sensors Using MOF Thin Film Membranes

 M‐MOF‐74 (M=Co, Mg, Ni) MOFs 
synthesized as crystalline thin films on 
functionalized IDEs

  Two step functionalization procedure: 
− Reacted IDE with aminosilanes, followed by 

ring opening of succinic anhydride
− Functionalization allowed for binding of metal 

cation and further growth of 3‐D MOF

 Ni‐MOF‐74 boasted a continuous thin 
film and used in a comparison study vs. 
a dropcast powder

 Thin film passed a modified ASTM  
D3359 test for durability 

 Demonstrated an increased response 
rate and larger total change in 
impedance 
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Henkelis, S. E., et al.,  “Continuous MOF Membrane-Based Sensors via 
Functionalization of Interdigitated Electrodes”, INVITED: Membranes 2021, 
11, 176.



Conclusions

 M‐MOF‐74 (M = Co, Mg, Ni)‐based sensors for selective detection of trace 
(0.5–5 ppm) NO2  were successfully demonstrated

 Ni‐MOF‐74‐based sensor exhibited a superior electrical response in its 
selectivity to NO2 over interfering gases such as N2, SO2, and ambient air 

 Differences in electrical response to NO2 between the M‐MOF‐74 
analogues were attributed to both the adsorption capacity and chemical 
interactions between the NO2 and MOF

 The magnitude of the electrical response observed is ordered Ni > Co > 
Mg, with Ni‐MOF‐74 providing 725× decrease in resistance at 5 ppm 
NO2 and a NO2 detection limit <0.5 ppm

 The high impedance of these materials enables applications requiring an 
ultralow power sensor or dosimeter, with the active material dissipating 
<15 pW, despite being a macroscale device

 Thin film Ni‐MOF‐74‐based sensors demonstrated an increased response 
rate and larger change in impedance than a dropcast Ni‐MOF‐74 sensor
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Future Work

 Investigations are underway:
− To further understand sensor response with potential 

interfering and/or secondary off‐gases
− To evaluate sensor response/stability over a range of 

environmental conditions (temp., humidity, NOx) as a 
function of time (e.g., 24 hours to >1 year)
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