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2 | Introduction - Light Emission in MOFs

Common light emitting materials rely on the use of rare-earth elements that are in limited
supply and are inconsistently distributed globally.

Metal-organic frameworks (MOFs) have
already demonstrated tunable light
emitting properties based on their
composition, structure and
incorporation of secondary species.
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Bandgap comparison in reported MOF structures
Chueh et al. J. Mater. Chem. A 7.29 (2019): 17079-17095.
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Sava Gallis et al. Chem. Mater. 26.9 (2014) 2943-2951

Emission spectra of SMOF-1, (inset) optical
image of white light emission
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Emission spectra of 10% Eu-doped SMOF 1
(inset) CIE chromaticity diagram

Sava et al. J. Amer. Chem. Soc. 134.9 (2012): 3983-3986
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How can crystal desigh elements control and
tune photoluminescence properties of MOFs?
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* Focus on initial success in SMOF-1 series
Sava et al. J. Amer. Chem. Soc. 134.9 (2012): 3983-3986

* Interpenetrated MOF structure with four stacked 1,3,5-Tris(4-
carboxyphenyl)benzene (BTB) linkers

* In, Ga, Eu, or mixed-metal centers to influence additional emission

SEM images of single crystals of Molecular building blocks in SMOF-1

) : ' X Unique stacked arrangement of BTB linkers in SMOF-1
as-synthesized SMOF-1 topological representation of single net




4 | Computational approach

Evaluate Emission from Stacked Linkers

o

Compositional Control of Stacking Distance

*Evaluation of UV-vis emission

from stacked BTB linkers only wl::

*The number (2-4) and stacking
distance (3.0-4.0 A) was varied

*Simulated via electronic structure
gas phase calculations

Calculation Details:

* B3LYP hybrid-functional with 6-31G(d,p) basis set

* Gaussian 16 Revision B.01

* Following optimization time-dependent DFT (TD-DFT)
was performed

* UV-Vis spectra calculated via calculated electronic
transitions (300-800 nm)

* Singlet and triplet states were both calculated

Refs: Frisch et al. Gaussianl6 2016., Hanwell et al. J. Chem. Phys. 1982, 77, 3654, Lee et al. Phys. Rev. B
1988, 37, 785, Becke et al. J. Chem. Phys. 1993, 98, 1372, Stratmann et al. J. Chem. Phys. 1998, 109, 8218,
Furche et al. J. Chem. Phys. 2002, 117, 7433, O ‘Boyle et al. J. Comput. Chem. 2008, 29, 839., Boyle et al.
Dalton Trans. 2018, 47, 4162.

*Evaluation of change in stacking
distance based on metals with
different ionic radii

*Multiple compositions were evaluated
(100% In, 100% Ga, 10% Eu-90% In,
25% Ga — 75%In)

*Simulated via periodic density functional theory (DFT)
simulations

Calculation Details:

*PBE exchange correlation functional for solids (PBEsol), non-spin
polarized, gaussian smearing of 0.01 eV, gamma k-point, converged to
0.01 eV/atom, dispersion correction of DFT-D3

*Vienna ab initio Simulation Program (VASP)

*Following metal replacement relaxed via three step protocol (relax
atomic positions, relax cell volume, relax atomic positions)

Refs: Kresse et al. Phys. Rev. B 1993, 47, 558, Perdew et al. Phys. Rev. Lett. 2008, 100, 136406., Grimme et al. J. Chem. Phys.
2010, 132, 154104, Grimme et al. J. Phys. Chem. C. 2020, 124, 26801, Vogel et al. Phys. Chem. Chem. Phys. 2019, 21, 23085,
Henkelis et al. ACS Appl. Mater. Interfaces. 2020, 12, 19504.
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5 | Stacking distance and number of
linkers alters emission wavelength

* Increasing # of linkers:

* Moves emission from single to
triplet states
* Decreases the strength of the
emission
a) Singlet Triplet
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Stacking distances can be controlled by the radii of the
metal

10

— — — In(expt.)

In (compt.) '

Ga (compt.)

InGa (compt.) l‘

INEu (compt.) | |
Al

* 100% Ga causes shifts to longer
stacking distances

* Partial Ga replacement adds in
some longer distances

* Partial Eu replacement adds
smaller stacking distances

a(r)

; . , ; : .
30 32 34 36 38 40 42 44
CC Distances (A)

M-O Distance (A)
Density (g/cm?)
Ga In Eu

Calc. 33.78 90 1.019 - 2.26 -
Expt. 33.98 90 1.002 - 221 -
Calc. 33.62 90 0.939 1.91 - -
Calc. 33.57 90 1.007 2.02 2.22 -

Cale. Very limited Manges in cdfPolume - 225 235 S



validation of computational models

* 25% Ga—75% In Compound 1 and
Compound 2 structures were synthesized

Compound 1 Compound 2

|
7 ‘ Multiple BTB-based MOFs were synthesized for m

SEM images of InGa-Compound 1 at 20 um (left) and InGa-Compound 2 at 100 um (right)

with elemental quantification shown for In (pink) and Ga (green).

— Calc. In Compound 1 — Calc. In Compound 2
—— Exp. InGa Compound 1 14 —— Exp. InGa Compound 2
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Emission wavelength increased for InGa Compound 1
compositions and decreased for InGa Compound 2

*Photoluminescence excitation and emission spectra were measured for In-, InGa-, and In-Eu Compound 1, In- and InGa-
Compound 2, and BTB linker excitation

* Addition of Ga or Eu to In-Compound 1 decreased the intensity and broadened the emission
* Quantum yield (QY) of the MOFs were lower than the linker alone and was consistent at different emission wavelengths

*Quenching of QY in MOFs is caused by Forster resonance energy transfers, a non-radiative mechanism from strong overlap
in the abSOI'pthl’l and emISSIOn SpGCtI'a Yu et al. J. Amer. Chem. Soc. 142.25 (2020): 11192-11202.
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; | Ga and Eu addition results in a blue shift in emission

]
 Color properties are calculated from emission spectra
* Warm white light needs a x,y chromaticity coordinate of 0.33, 0.33
 Therefore, these structures are primarily blue emitters due to the absence of a red color component
cCT ®)
520 A: BTB Linker 340 0.181 0.081 42 34,367
os. B: In Compound 1 BTB Linker
C: InGa Compound 1 365 0.195 0.145 68 34,367
D: InEu Compound 1
‘ E: In Compound 2 340 0.216 0.201 83 34,463
J F: InGa Compound 2
05 365 0.244 0.285 56 16,174
= 340 0.184 0.131 56 34,460
g 365 0.220 0.238 82 34,463
340 0.190 0.124 62 34,367
InGa SMOF-1
. 365 0.219 0.228 83 34,463
330 0.209 0.193 77.4 34,463 I
In SMOF-1
, , 360 0.234 0.298 85.1 33290
0.0 — 77T — T
0.0 0.1 0.2 03 0.4 0s 0.6 0.7 0.8 330 0.512 0.275 45 1,410
x InEu SMOF-1 )
360 0.309 0.298 81 7,0 #

Quinine Sulfate 365 0.170 0.212 46 34,463 \T



» | Calculated results (emission) are validated by

experiential structures

* Calculated InGa Compound 1 emission is

within 1 nm of experimentally measured

values

* Emission wavelength decreases with lower

stacking distances
* Larger effective 1onic radii decreases the
stacking distances

Average Stacking | Effective Ionic Calculated Experimental

Distance (A) Radius® (A) | Emission® (nm) | Emission (nm)
4.16 458 -

3.95 2.20 458 -
4.17 1.87 496 -

4.07 2.08 470 471

radius e e Con%'g(\%d 1 structure (1, = #3 %, g, = 1.87 A, 1, 08 A)

b Predicted emission value from 45% triplet and 55% singlet contributions, with referenced to In-Compound 1
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I
Conclusions m

Computational material design approach was used for identification of mechanisms of tunable light emission in a
family of interpenetrated BTB MOF structures

The number and distance of the stacked linkers controlled the emission wavelength and the intensity of the emission
Metals with different ionic radii changes the stacking distance, identified as a mechanisms of controlling the
emission wavelength

Synthesis and characterization of InGa-based BTB confirmed the influence of Ga introduction in shifting emission
wavelength to 470 nm, from 458 nm in In-BTB MOF

The results demonstrate the use of computational methods to enable crystal design of MOF structures with
predictable emission properties

More Information: Rimsza, J.M., Henkelis, S.E., Rohwer, L.E.S, Sava Gallis, D.F., and Nenoff, T.M. “Crystal Prediction
and Design of Tunable Light Emission in Metal-Organic Frameworks” Advanced Optical Materials under review
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