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Abstract—Given a graph, finding the distance-2 maximal
independent set (MIS-2) of the vertices is a problem that is
useful in several contexts such as algebraic multigrid coarsening
or multilevel graph partitioning. Such multilevel methods rely
on finding the independent vertices so they can be used as seeds
for aggregation in a multilevel scheme. We present a parallel
MIS-2 algorithm to improve performance on modern accelerator
hardware. This algorithm is implemented using the Kokkos
programming model to enable performance portability. We
demonstrate the portability of the algorithm and the performance
on a variety of architectures (x86/ARM CPUs and NVIDIA/AMD
GPUs). The resulting algorithm is also deterministic, producing
an identical result for a given input across all of these platforms.
The new MIS-2 implementation outperforms implementations in
state of the art libraries like CUSP and ViennaCL by 3-8x while
producing similar quality results. We further demonstrate the
benefits of this approach by developing parallel graph coarsening
scheme for two different use cases. First, we develop an algebraic
multigrid (AMG) aggregation scheme using parallel MIS-2 and
demonstrate the benefits as opposed to previous approaches used
in the MueLu multigrid package in Trilinos. We also describe
an approach for implementing a parallel multicolor “cluster”
Gauss-Seidel preconditioner using this MIS-2 coarsening, and
demonstrate better performance with an efficient, parallel, mul-
ticolor Gauss-Seidel algorithm.

I. INTRODUCTION

Given an undirected graph G = (V,E), an independent set
is a subset I1 of the vertices in G such that for any two vertices
u, v in I1, the edge (u, v) is not in E. A maximal independent
set is an independent set where no additional vertex from
V can be added to I1 while I1 remains an independent set.
Independent sets can be generalized to require an arbitrary
distance of separation between any two vertices. Formally, a
distance-k independent set Ik is subset of V , such that for any
two vertices u, v in Ik, there exists no path u↔v of length
less than or equal to k in G. We are interested in finding a
maximal distance-2 independent set, or MIS-2.

The problem of computing distance-2 maximal independent
set can be used for graph coarsening in multilevel methods.
These are commonly employed in multigrid solvers [4], [6],
[30], domain decomposition methods [14], graph or hyper-
graph partitioning [5], [16], and graph drawing [17]. Multilevel
methods apply coarsening recursively until the graph is smaller
than some threshold. Later, we describe two coarsening algo-
rithms based on MIS-2.

As computer architectures are becoming increasingly di-
verse, typical computational science and engineering (CSE)

applications are interested in supporting multiple CPU archi-
tectures (ARM, AMD, IBM, Intel) and multiple GPU archi-
tectures (AMD, Intel, NVIDIA). Such diversity has resulted
in a focus on programming models such as Kokkos [27].
Kokkos provides hardware abstractions that make performance
portable software easier to develop. This refers to software that
can utilize the extreme parallelism and hierarchical structure
of GPUs, while still performing well on traditional multicore
CPUs. We present such an algorithm for MIS-2 and implement
it using Kokkos.

Non-deterministic parallel algorithms are common when
designing parallel algorithms for modern accelerators because
of several of the modern accelerator architectures do not
guarantee deterministic behavior when using certain operations
(e.g. atomics). However, the typical application user would
like algorithms such as MIS-2 to be deterministic so that the
behavior of solvers or graph partitioners can be replicated
from run to run. Our parallel MIS-2 algorithm is deterministic
across architectures and across several runs in the same
architecture.

This MIS-2 algorithm can be used to develop a graph aggre-
gation (coarsening) method. This graph aggregation method is
also parallel and deterministic. We demonstrate its impact on
two use cases related to linear solvers. The first use case is
the multilevel aggregation in algebraic multigrid methods. The
attributes of our algorithm (high parallelism and determinism)
are both appealing for multigrid solvers. The focus in multigrid
research has shifted towards faster setup times on accelerators
in addition to solve times recently (either for better efficiency
or because the problem structure changes and prevents reuse
of setup). It has become important to have high-quality yet
fast aggregation that can utilize modern accelerators. We
will compare our approach against previous techniques to
parallelize aggregation, like greedy distance-2 coloring, in
section VI-F.

The second use case where we use the graph aggregation
approach is in a Gauss-Seidel preconditioner. State of the
art GPU implementations use coloring based approaches for
parallel preconditioning. Coloring is primarily used to find
independent rows in this use case. We use the new aggregation
scheme to develop a Gauss-Seidel preconditioning algorithm
that improves the runtime on all problems compared to past
implementations [11].

The contributions of this paper can be summarized as:
• We present a parallel MIS-2 algorithm that is determin-
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istic and utilize large amounts of parallelism available in
modern accelerator hardware.

• We demonstrate that the algorithm and the implementa-
tion is performance portable i.e. well suited for different
accelerator hardware and standard CPUs. We show per-
formance of the algorithm on two CPU architectures and
two GPU architectures.

• Our implementation of this algorithm is 3-8x faster than
implementations in libraries such as CUSP and Vien-
naCL, while producing outputs of similar quality.

• We develop a parallel aggregation algorithm using the
MIS-2 algorithm as a kernel.

• We use the MIS-2 aggregation algorithm in multigrid
setup and show this aggregation scheme enables faster
solver convergence than the previous MIS2-based ap-
proach. The new approach still runs entirely on the
accelerator and is also deterministic.

• Finally, we introduce cluster multicolor Gauss-Seidel,
a parallel preconditioner that uses our parallel MIS-2
aggregation to improve convergence when compared to
standard (point) multicolor Gauss-Seidel.

The rest of the paper is organized as follows. Section III
describes our algorithm, as well as our aggregation scheme
based on MIS-2. Section III-C introduces a new parallel
Gauss-Seidel preconditioner that relies on graph coarsening
(such as our MIS-2 aggregation). Section IV analyzes the
asymptotic depth and work of the MIS-2 algorithm. Section V
describes the four algorithmic optimizations used to improve
the performance of our algorithm. The results of our portable
parallel algorithm and comparisons with other implementa-
tions are given in Section VI.

II. RELATED WORK

MIS-2 has been previously applied to the problem of
algebraic multigrid aggregation. In the ML multigrid package,
Tuminaro and Tong [28] implemented MIS-2 using sparse
matrix multiplication (SpGEMM) followed by a parallel MIS-
1 algorithm [1]. In terms of solve time and iterations, this
aggregation scheme was found to perform comparably to
their decoupled aggregation that runs sequentially within each
processor’s subdomain. Later, Bell, Dalton and Olson created
a complete implementation of algebraic multigrid where ev-
ery step of both setup and solve execute in parallel on an
accelerator (specifically, an NVIDIA Tesla C2050 GPU) [3].
They present an efficient algorithm for computing an MIS-
k (for general k ≥ 1) directly, without using SpGEMM.
This algorithm was implemented in the CUSP library [9]. For
aggregation, Bell et al. use a simple coarsening strategy: each
vertex in the MIS-2 is used as a root, and initial aggregates
are formed from roots and their direct neighbors. Leftover
vertices are joined arbitrarily to any adjacent aggregate. They
note that for structured problems, this coarsening tends to
produce irregularly shaped aggregates, increasing the number
of solver iterations required. Both Bell’s MIS-2 algorithm and
this coarsening strategy were implemented in the ViennaCL

library [23]. Additionally, Azad et al. presented a GraphBLAS-
based formulation of these algorithms [2].

Outside of algebraic multigrid, Gilbert et al. evaluated MIS-
2 coarsening for multilevel graph partitioning [12]. Here,
the MIS-2 based coarsening from Bell et al. [3] is applied
recursively to a graph until it is sufficiently small to use serial
partitioning. Although heavy-edge matching (HEM), heavy-
edge coarsening (HEC), and coarsening inspired by classical
algebraic multigrid [24] are more commonly used in the
literature for multilevel partitioning, Gilbert et al. found that
MIS-2 coarsening outperforms HEM for regular graphs.

The related problem of MIS-1 has been focus of several
studies. In particular, Luby designed two simple parallel
algorithms for MIS-1. The first one (Monte Carlo Algorithm
A [18]) is in fact the distance-1 analogue of our MIS-2
algorithm. We use this relationship to find the depth of our
algorithm (Section IV). A later algorithm by Adams and
Demmel achieved O(1) expected time for structured graphs in
a PRAM model [1]. Another problem is the maximum inde-
pendent set, or the largest maximal independent set of a graph.
This is a classic NP-hard problem, and both approximate and
exact algorithms have been widely studied. Chang, Li and
Zhang designed linear and near-linear approximate algorithms
for maximum independent set using their Reducing-Peeling
heuristic for iteratively reducing the size of the problem [8].
Hespe, Schulz and Strash designed a parallel method for
kernelization (exact reduction to a smaller problem) that can
then be solved by exact or heuristic algorithms [15].

III. ALGORITHMS

A. MIS-2 Algorithm

Algorithm 1 is our parallel MIS-2 algorithm. It uses a
similar idea as Bell’s algorithm in the k = 2 case [3], but
includes four important optimizations that greatly increase its
performance. These will be discussed in detail in section V.

In the algorithm, all vertices are initially undecided: they
may later become either added to the MIS-2 (IN) or not
(OUT). The algorithm iterates until no undecided vertices
remain. First, priorities in the form of a 3-tuple Tv =
(status, rand , ID) are assigned to each vertex. The possible
values for status are IN < UNDECIDED < OUT. rand is a
pseudo-random priority that is computed using a deterministic
hash function h. The algorithm will work with any h, but the
h used in practice will be discussed in section V-A. Lastly, the
ID of a vertex is simply its index in the graph. These tuples can
be compared with each other in a lexicographic manner. First
the statuses are compared. If they are equal, the rand values
are compared. If they are also equal, the ID is compared last.
Since each vertex ID is unique, this last comparison can never
be a tie. To decide which vertices can be added to the set, the
minimum of Tv within a radius-2 neighborhood of each vertex
is computed. We use the same idea as Bell et al. to do this
efficiently: if every vertex v knows Mk

v is the minimum tuple
in a radius-k neighborhood, then over all neighbors w, v can
compute Mk+1

v = min(Mk
w). For MIS-2, this process can be

repeated twice so that every vertex knows the minimum tuple



Algorithm 1 MIS-2: Kokkos Kernels Algorithm (SIMD par-
allelism not shown)

1: procedure MIS-2(G = (V,E))
2: . IN: vertex is in MIS
3: IN ← 0
4: . OUT: vertex is not in MIS
5: OUT ← UINT MAX
6: worklist1 ← 0 . . . |V |
7: worklist2 ← 0 . . . |V |
8: iter ← 0
9: while worklist1 6= ∅ do

10: . Refresh row status
11: parallel-for v ∈ worklist1 do
12: . | denotes bitwise concatenation
13: . h(...) is a hash function
14: Tv ← h(iter , v)|v + 1
15: end parallel-for
16: . Refresh column status
17: parallel-for v ∈ worklist2 do
18: Mv ← min(Tw : w ∈ adj (v))
19: if Mv = IN then
20: Mv ← OUT
21: end if
22: end parallel-for
23: . Decide IN/OUT of set
24: parallel-for v ∈ worklist1 do
25: if ∃w ∈ adj (v) : Mw = OUT then
26: Tv ← OUT
27: end if
28: if ∀w ∈ adj (v) : Tv = Mw then
29: Tv ← IN
30: end if
31: end parallel-for
32: . Compact worklists with parallel prefix sums
33: worklist1 ← {v ∈ worklist1 : Tv /∈ {IN ,OUT}}
34: worklist2 ← {v ∈ worklist2 : Mv 6= OUT}
35: iter ← iter + 1
36: end while
37: return {v : Tv = IN }
38: end procedure

in a radius-2 neighborhood. If Tv = M2
v , v has the lowest

tuple in its neighborhood so it can be marked IN without
ambiguity. No other vertex in the neighborhood can also see
that it has the minimum. Likewise, if M2

v = (IN , ∗, ∗), v is
in the neighborhood of an IN vertex so v must be marked
OUT. Algorithm 1 is designed to be as efficient as possible
for MIS-2, so we only need to compute Mv as the radius-1
minimum tuple, and then use Mw among all neighbors w to
decide if v’s status can be decided. The main iteration has four
phases: Refresh Row (assign random priorities to vertices),
Refresh Column (compute Mv in distance-1 neighborhood),
Decide Set (compute status using distance-2 information) and
maintaining the worklists for next iteration. For more details,
section V-A describes the hash function h and how it was

Algorithm 2 Basic MIS-2 Coarsening
1: procedure COARSEN(G = (V,E))
2: M ← MIS2 (G)
3: parallel-for v ∈M do
4: Build aggregate from v and its neighbors
5: end parallel-for
6: parallel-for v ∈ V do
7: if v not aggregated then
8: Add v to the aggregate of any neighbor
9: end if

10: end parallel-for
11: end procedure

chosen, and section V-C explains how tuples are stored in a
compressed format for performance.

Fig. 1 is a complete visual example of Algorithm 1 running
on a small graph. Red nodes are in the MIS-2, and grey
nodes are definitely not in the MIS-2. White nodes are still
undecided. Each node contains two pieces of information:
its ID, and a tuple (status, priority , ID). The status (in,
out, or undecided) is represented with color, but the other
two elements are shown as integers. Snapshots of the graph
are shown at three points in the algorithm, for each of two
iterations. Refresh Row refers to line 15 in the algorithm, after
Tv (with a new random priority) has been assigned to each
vertex. Refresh Column is line 22, after Mv has been computed
as the minimum Tw among all neighbors. Lastly, at Decide Set
(line 31), vertices have been marked either IN or OUT where
possible. After two iterations, all vertices have been decided
so the algorithm terminates and returns the MIS-2 {1, 4}.

B. MIS-2 Based Aggregation

Given an MIS-2, it is straightforward to construct a graph
coarsening suitable for smoothed-aggregation based algebraic
multigrid (SA-AMG) or for a clustering based preconditioner.

Algebraic multigrid is a powerful preconditioning technique
for the solution of a sparse linear system Ax = b. The method
relies on building a hierarchy of smaller (coarser) linear
systems from A. The residuals are restricted from a larger
system to a smaller system, and the system is solved directly
on the coarsest level. Finally, this solution is interpolated back
to the original system.

A simple method for aggregation with MIS-2 is shown in
Algorithm 2. This was also the scheme used by Bell et al. [3].
Each vertex in the MIS-2 is made a root. Each root and its
immediate neighbors become an aggregate. Then remaining
vertices join with an adjacent aggregate arbitrarily. By the
maximal property of MIS-2, all vertices must be within two
edges of a root, so this scheme assigns every vertex to an
aggregate.

In Kokkos Kernels, we introduce another approach for
coarsening. Algorithm 3 is portable, parallel version MIS-2
aggregation based on ML’s sequential MIS-2 aggregation [28].
In the first phase, we build the initial set of aggregates from
MIS-2 vertices and their immediate neighbors. In the second
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Figure 1. A full example of Algorithm 1 computing an MIS-2 of a small
graph. Red, gray and white nodes are IN, OUT and undecided, respectively.
In each node, the first line is the vertex ID. After Refresh Row, the second line
contains the tuple Tv = (priority, ID). After Refresh Column, the second
line contains the tuple Mv = (priority, ID), or the minimum Tv among
all neighbors. Lastly, after Decide Set, there are three possible cases for each
vertex v. If for every neighbor w, Mw = (∗, v), then v is marked IN. If for
any neighbor w, Mw = OUT , then v is marked OUT. Otherwise, v remains
undecided.

phase, we construct another MIS-2 from the subgraph induced
by the non-aggregated vertices. The vertices in this MIS-2 can
become aggregate roots if they have at least 2 unaggregated
neighbors. Otherwise, we consider the aggregate too small
and likely to cause increased fill-in during smoothing step of
multigrid solver. Finally, phase 3 joins all leftover vertices to
the most strongly coupled adjacent aggregate. Coupling to an
aggregate a is defined as the number of neighbors in a. To
maintain determinism, the coupling and aggregate sizes are
computed using the “tentative” labels from the end of phase
2. These remain constant during phase 3. Since algorithm 3

Algorithm 3 MIS-2 based Aggregation
1: procedure AGGREGATION(G = (V,E))
2: . Phase 1: Form initial aggregates using MIS-2
3: M1 ← MIS2 (G)
4: parallel-for v ∈M1 do
5: Build aggregate from v and its neighbors
6: end parallel-for
7: . Phase 2: Form secondary aggregates
8: M2 ← MIS2 (G \ {v ∈ V : v is aggregated })
9: parallel-for v ∈M2 do

10: if v has ≥ 2 unagg. neighbors then
11: Agg. v with unagg. neighbors
12: end if
13: end parallel-for
14: . Phase 3: Cleanup
15: . Save current aggregate labels as “tentative”
16: tent ← labels
17: coupling(a, v)← |{u : (u, v) ∈ E ∧ tentu = a}|
18: aggsize(a)← |{v : tentv = a}|
19: parallel-for unagg. v do
20: Join v to agg. with max coupling
21: If a tie, choose the agg. with min aggSize
22: end parallel-for
23: end procedure

computes an MIS-2 twice, its performance depends heavily on
the performance of the MIS-2 implementation.

Later in section VI-F, we show that this aggregation scheme
does enable faster solver convergence than algorithm 2. This
effectively replicates the sequential quality results of ML
[28] while running efficiently on modern accelerators like the
NVIDIA V100.

C. Cluster Multicolor Gauss-Seidel

The Gauss-Seidel (GS) method is commonly used as a
preconditioner for Krylov methods like conjugate gradient
(CG) and generalized minimum residual (GMRES). Classical
GS is not readily parallelizable as each update to xi depends
on all previous updates (xj , j < i). However, using graph
coloring, it is possible to find sets of vertices which are
independent and can be updated in parallel in the same manner
as GS [11]. Here, we call this method point multicolor GS.

Point multicolor GS discovers parallelism at the cost of an
increased number of iterations. We design a preconditioner
that reduces the number of iterations, while speeding up both
setup and solve. Our preconditioner coarsens the graph (e.g.
using Algorithm 3) and colors the coarsened graph to yield sets
of independent clusters. Algorithm 4 shows how we use this
structure for an improved preconditioner, we call cluster mul-
ticolor GS. Rows within each cluster are updated sequentially,
so locally this method is equivalent to classical GS. Therefore,
cluster multicolor GS results in a preconditioner with a number
of iterations closer to sequential Gauss-Seidel, alleviating the
primary issue faced by point multicolor GS [11].



Algorithm 4 Cluster Multicolor Gauss-Seidel
1: procedure CMGS(A, x, b)
2: . Setup (reusable as long as A’s structure unchanged)
3: Ac ← coarsen(A) . e.g. Algorithm 2 or 3
4: clustersv ← vertex in Ac assigned to v
5: colorsets ← color(Ac)
6: . Apply
7: for color ∈ ncolors do
8: parallel-for c ∈ colorsetscolor do
9: for i ∈ clustersc do

10: r ← bi −Aix
> . Row i of A

11: xi ← r/Aii

12: end for
13: end parallel-for
14: end for
15: end procedure

A symmetric version of this method (“SGS”) can be
achieved by looping over the colors twice: first forward
and then backward. Additionally, for the symmetric cluster
method, the order of row updates within each cluster are
reversed during the backward loop.

IV. THEORETICAL ANALYSIS

To find the asymptotic behavior of Algorithm 1, it is helpful
to reduce the MIS-2 problem to MIS-1. This will allow us to
apply theoretical results about a related MIS-1 algorithm. We
will use a property of adjacency matrix exponentiation:

Lemma IV.1. If G is the adjacency matrix representation of a
graph, Gk

ij 6= 0⇔ a path of length k exists between i and j in
G. Furthermore, if G contains all self-loops, then Gk

ij 6= 0⇔
a path of length ≤ k exists between i and j in G.

Lemma IV.2. If G is adjacency matrix representation of a
graph (including all self-loops) and I = MIS-1(G2 ), then I
is also a valid MIS-2 of G.

Proof. Let I = MIS-1(G2). We want to show that I satisfies
both requirements (independence and maximality) for MIS-2
on G.

Assume I violates the distance-2 independence property in
G. Then there exist i, j ∈ I such that there is a path of length
≤ 2 between i and j in G. G2

ij 6= 0 by IV.1. So i, j are
adjacent in G2. Contradiction: I is not an MIS-1 of G2.

Now assume that I is not a distance-2 maximal independent
set of G. For some v /∈ I , I∪{v} still does not violate distance-
2 independence in G. Then G contains no path of length ≤ 2
between v and any other vertex in I . For all i ∈ I,G2

iv = 0
by IV.1. But this also means that I ∪ {v} satisfies distance-1
independence in G2. Contradiction: I 6= MIS-1(G2).
I is an MIS-2 of G.

By applying IV.2, we can apply a theorem about Luby’s
Monte Carlo Algorithm A (from now on, simply called
“Luby’s algorithm”) for MIS-1 [18] to our MIS-2 Algorithm
1. Luby’s algorithm is the distance-1 analogue of algorithm

1. Initially, all vertices are candidates for the MIS-1 (I = V ).
Until I converges, new random priorities are assigned to each
vertex in I , and vertices with a higher priority neighbor are
removed from I . The fact that vertices are not explicitly
labeled IN is a superficial difference: if v has the highest
priority among its neighbors, Luby’s algorithm will remove
v’s neighbors from I which guarantees that v can never
be removed in subsequent iterations. I therefore contains
two mutually exclusive types of vertices: those which are
undecided (analogous to worklist1 in algorithm 1) and those
marked IN. Note that in algorithm 1, we specify that a hash
function h is used as a pseudo-random number generator. The
same function could be used in Luby’s algorithm. Assuming
the same priorities are chosen for each vertex and iteration,
Lemma IV.2 shows that Luby’s algorithm run on G2 will
terminate in the same number of iterations as Algorithm 1
run on G. Since G and G2 have the same number of vertices,
by Luby’s Theorem 1 [18], Algorithm 1 can be expected to ter-
minate in O(log(V )) iterations. The parallel prefix sums have
O(log(V )) depth and all other statements have O(1) depth, so
the overall expected depth of Algorithm 1 is O(log2(V )). We
assume the work of a parallel prefix sum is O(n log(n)). An
upper bound of the work per iteration of Algorithm 1 (lines 9-
30) is when both worklists contain all V vertices. The loop on
line 9 does constant work per vertex, while the loops on lines
14 and 20 inspect each neighbor, for a total of O(V + E)
work. Combining these, an upper bound for the expected
total work of Algorithm 1 is O(log V (V + E + V log V ))
= O(V log V + E log V + V log2 V ).

V. ALGORITHMIC OPTIMIZATIONS

A. Pseudo-random Priorities

Both our Algorithm 1 and Bell’s algorithm [3] assign
pseudo-random priorities to each vertex to determine an order
for vertices to join the MIS-2. The difference is that Bell et
al. algorithm chooses priorities once and uses them in every
iteration, but the Kokkos Kernels algorithm computes new
priorities during each iteration. Luby’s Monte Carlo Algorithm
A for MIS-1 similarly used new priorities each iteration [18].

When fixed priorities are used, vertices may become part of
a dependency chain. For example, suppose v has a distance-
2 neighbor w, and in v’s radius-2 neighborhood, w and v
have the lowest and second-lowest priorities respectively. v’s
membership in the MIS-2 cannot be decided until after w is
decided. If w is decided to be IN, then v immediately becomes
OUT (and vice versa). Meanwhile, no other vertices in v’s
neighborhood could become IN (since they all have higher
priority than v). Short dependency chains are inevitable, but
long dependency chains can serialize the entire algorithm (al-
lowing only a single vertex to be decided every two iterations).

Table I shows the number of iterations required by three
different schemes for choosing the priorities. The test graphs
are described in Section VI. The iteration count is the number
of times the loop on line 8 of Algorithm 1 is executed. “Fixed”
is the same as Bell’s algorithm, where priorities are random-
ized once. “Xor Hash” and “Xor* Hash” are both versions of



Table I
MIS-2 ITERATION COUNTS FOR THREE RANDOM PRIORITY METHODS.

FIXED IS SAME AS [3]. XOR AND XOR* ARE USED WITH ALGORITHM 1.

Fixed Xor Hash Xor* Hash
af shell7 11 23 8
ecology2 12 11 8
Hook 1498 14 26 11
PFlow 742 14 39 12
thermal2 12 17 9
apache2 13 21 10
Elasticity3D 60 13 23 10
Fault 639 13 26 10
Laplace3D 100 14 20 10
Serena 14 22 11
tmt sym 12 18 8
audikw 1 14 22 10
Emilia 923 13 20 11
Geo 1438 14 26 11
ldoor 11 16 8
parabolic fem 11 9 9
StocF-1465 14 28 10

Algorithm 1, where a deterministic hash function h is used
as the pseudo-random generator. In order to give completely
different values in different iterations, h combines the vertex
ID and iteration number: h(iter , v) = f(f(iter) ⊕ f(v)),
where ⊕ is bitwise XOR. For “Xor Hash”, f(x) is 64-bit
xorshift, and for Xor*, f(x) is the 64-bit xorshift* (xorshift
followed by a linear congruential step). Both of these functions
were discovered by Marsaglia [19]. Surprisingly, xorshift is
a poor hash function for this algorithm. It usually leads to
a significantly higher iteration count than “Fixed”, implying
that f(f(iter) ⊕ f(v)) is correlated from one iteration to
the next, preventing a dependency chain from being broken.
However, xorshift* does not have this issue. We use it in the
implementation of Algorithm 1 and all experiments in the rest
of the paper.

B. Worklists

Bell et al. [3] process all vertices in the graph in every
iteration. This causes a large amount of redundant work to be
performed on vertices whose MIS-2 status is already known,
especially in the later iterations when only a few vertices
remain undecided. To avoid redundant work, Algorithm 1
maintains two distinct worklists for vertices. worklist1 simply
contains the undecided vertices. worklist2 contains the vertices
which are not adjacent to any IN vertices. This is because of
the behavior of the loop on line 14: once any vertex v gets an
IN neighbor, Mv will permanently become OUT.

In Algorithm 1, on lines 29 and 30, the vertices which will
not be processed again are filtered out using a parallel prefix
sum (also known as a “scan”). Kokkos provides a parallel scan
that is efficient on all supported backends [27]. Deveci et al.
previously used the scan in Kokkos to maintain edge worklists
for greedy graph coloring [11].

C. Compressed Status Tuples

Bell’s algorithm uses tuples containing 3 elements: a status,
a priority, and an ID. The algorithm must store three of

these tuples per vertex (S, T and T̂ ). The status can only
take one of three values: IN, OUT or UNDECIDED. The
priority field can be an integer of any width. If it is narrow
(e.g. 8 bits) ties become likely, but the unique ID is also
compared as a tiebreak. Finally, the ID is an integer which
must be wide enough to represent |V |. A straightforward
implementation could use a 3-element structure to represent
each field individually, but this is not the most efficient way
to represent the information contained in the tuple as a whole.

Algorithm 1 compresses these tuples into a single integer
with the same width as the vertex IDs (typically 32 bits). IN
and OUT are represented as special values 0 and UINT MAX
respectively. This is correct because it maintains the ordering
IN < UNDECIDED < OUT . No particular ordering needs
to exist between two IN or two OUT tuples.

For UNDECIDED vertices, the priority and vertex ID are
packed together to occupy the range between IN and OUT. b =
dlog2(|V |+ 2)e bits are used to represent the ID component,
and the remaining bits (e.g. 32−b) are used for the priority. The
vertex ID still functions as a tiebreak, since compressed tuples
with different IDs must differ in at least one bit. The final
value is computed as (priority << b) | (id + 1).
The smallest possible value produced by this formula is 1
(for priority and id both 0). The largest possible value is
(0xFFFF... << b) | (maxVert + 1). Vertices use
0-based numbering, so maxVert + 1 = |V |.

b ≥ log2(|V |+ 2)

⇒ 2b ≥ |V |+ 2

⇒ 2b > |V |+ 1

⇒ 2b − 1 > |V |

(1)

Equation 1 shows that there must be at least one zero bit
in the least significant b bits. Therefore, no combination of
priority and vertex ID can collide with either IN or OUT.
The technique of packing several pieces of information into
a single integer was inspired by ECL-MIS [7], a parallel
greedy algorithm for computing the MIS-1. In this algorithm,
Burtscher et al. represented vertex status using 8-bit integers.
If the least significant bit is 0, the vertex has been decided
and the remaining bits will all be 1 for IN and 0 for OUT.
If the least significant bit is 1, the remaining bits represent
the randomized priority (and must be neither all 0 nor all 1).
One important difference between ECL-MIS and our MIS-2
algorithm is that ECL-MIS does not require the priorities to
be unique. Since our MIS-2 does, we include the vertex ID in
the least significant bits.

D. SIMD Parallelism

The final optimization used in Kokkos Kernels MIS-2 is
the use of SIMD parallelism in the innermost loops. This
level of parallelism is called “warp-level” or “wavefront-level”
in NVIDIA and AMD terminology, respectively. It is not
explicitly shown in Algorithm 1, but it is used in each loop
over vertex neighbors (lines 15, 21 & 24). The Kokkos SIMD-



level parallel reduce functionality is used to compute the
functions min , ∀ and ∃ over the neighbors of a vertex [27].

The primary performance benefit of iterating on neighbors
with SIMD-level is in the memory access pattern on GPUs.
In the CRS sparse matrix/graph format, the adjacency list of
each vertex is stored contiguously. When reading from this list
with warp- or wavefront- level parallelism, memory accesses
can be coalesced into a single memory transaction. This prin-
ciple has been exploited previously in other graph problems,
like breadth-first search [20] and betweenness centrality [25].
However, this does not give a significant speedup on CPUs
because of cache benefits. Additionally, the adjacency lists
have irregular sizes and are not aligned to the SIMD register
width (e.g. 256 bits for AVX), so most CPU SIMD instructions
could not operate at full efficiency.

Even on GPUs, SIMD parallelism incurs some overhead.
Every thread in the warp/wavefront must read some common
information about the row, and during this time all the threads
are busy with no useful parallelism. It is faster to iterate over
its neighbors sequentially with a single GPU thread for low-
degree vertices. In practice, we use SIMD parallelism only on
GPUs and only if the average vertex degree is at least 16.

E. Lessons for portable, parallel graph algorithms

The four optimizations described here are not only useful
for MIS-2, but could be applied to a wide variety of parallel
graph algorithms.

In Section V-A, we showed that for our pseudo-randomized
algorithm, the choice of hash function can drastically affect the
number of iterations of MIS-2. It was not obvious that xorshift
was suboptimal until xorshift* was tested. For any algorithm
that relies a hash being statistically independent with respect
to the input, it is worthwhile to test different functions and
verify that they are in fact independent.

The benefits of using worklists as in section V-B are clear
for our MIS-2 algorithm, but in general this technique comes
with tradeoffs. The parallel scan used to compact each worklist
between iterations costs time, and reading an item (e.g. vertex
ID) out of a worklist delays any useful work on that item.
This approach has been applied successfully to greedy coloring
[11], but it could also be applied to iterative refinement where
only a subset of vertices (i.e. those on a boundary) are being
considered.

The use of compressed status tuples discussed in section
V-C can be generalized as the elimination of redundant infor-
mation. In our algorithm, a vertex’s state may be decided (IN
or OUT), or undecided. Only if it is undecided does it also
need the random priority and ID. This conditional need for
information is exploited in the way we represent the vertex
state tuples.

Finally, the use of SIMD parallelism is a key pattern for
achieving high performance on GPUs. A very common pattern
in graph algorithms is to iterate over a vertex’s neighbors. If
there are no data dependencies between the neighbors (as in
our algorithm), SIMD increases both parallelism and improves
memory coalescing as described in V-D.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our im-
plementation of the MIS-2 algorithm in Kokkos Kernels. We
begin by showing the impact of each one of our optimizations
compared to the baseline implementation on V100 GPUs. The
baseline is our implementation of the Bell et al. [3] algorithm
using Kokkos. Next we demonstrate the scaling of the al-
gorithm on mesh-like problems in terms of the MIS-2 size
and the number of iterations. We then demonstrate portability
betwen the NVIDIA V100 and AMD Radeon MI100 GPUs,
and scalability on Intel and ARM CPUs. We also compare
our implementation to the CUSP and ViennaCL libraries on
V100 GPUs and demonstrate that our implementation achieves
similar quality but better performance. We demonstrate the
efficacy of MIS-2 based aggregation Algorithm 3 by using it
in the multigrid solver MueLu. Lastly, we show the perfor-
mance of the cluster Gauss-Seidel preconditioner, Algorithm
4. All experiments use the same set of 17 matrices. Two are
generated using the Galeri and MueLu packages of Trilinos
[4]: Laplace3D 100 is a 1003 grid with a 7-point stencil, and
Elasticity3D 60 is a 603 grid with a 27-point stencil and 3
degrees of freedom per point. The other 15 matrices are from
the Suite Sparse collection [10].

We use CUDA 10.2 for the NVIDIA V100 experiments.
The only exception is that we used CUDA 9.2 in the CUSP vs.
Kokkos Kernels comparisons since CUSP does not officially
support CUDA 10. For the AMD MI100 experiments, we used
the HIP backend of Kokkos and the ROCM 4.3.0 toolchain.
For Intel CPU results, we used a dual-socket Intel Xeon Plat-
inum 8160 system with 24 cores per socket and 2 threads per
core, and compiled with Intel 20.2. Finally, ARM CPU results
were measured on a dual-socket Cavium ThunderX2 with 28
cores per socket and 2 threads per core. We used armclang 20.1
on the ARM system. The MIS-2 implementation used in these
experiments is available in the Kokkos Kernels library [22].
Summary statistics for the 17 matrices and the average running
times on each of these four platforms can be found in Table
II. 48 and 56 OpenMP threads were used on the Skylake and
ThunderX2 systems respectively, since these gave the lowest
wall time (thread scalability is discussed in section VI-C).

A. Impacts of Algorithmic Optimizations

Fig. 2 shows the effects of the four optimizations discussed
in Section V on 17 matrices. We use NVIDIA V100 archi-
tecture for these comparisons. Five different implementations
are compared. The first is a reference implementation of
Bell’s algorithm for a general MIS-k, which we call with
k = 2 [3]. Each of the next four implementations adds another
optimization from section V, while retaining all previous opti-
mizations. The final “SIMD” implementation is Algorithm 1 as
implemented in Kokkos Kernels, with all four optimizations.

All optimizations provide significant speedups, but worklists
provide the greatest speedup with 2.55x (geometric mean) on
these 17 graphs. Random priority, Packed Status, and SIMD,
lead to 1.28x, 1.72x, 1.37x speedups respectively. The four
optimizations combined yield a 8.97x speedup. Notice that



Table II
SUMMARY STATISTICS OF MATRICES USED IN EXPERIMENTS, AND MEAN TIMES TO RUN ALGORITHM 1 ON THEM FOR THE FOUR ARCHITECTURES.

TIMES ARE IN MILLISECONDS AND WERE AVERAGED OVER 100 TRIALS. INTEL SKYLAKE AND THUNDERX2 ARM USE 48 AND 56 OPENMP THREADS,
RESPECTIVELY.

|V |(×106) |E|(×106) Avg deg. Max deg. NVIDIA V100 AMD MI100 Intel Skylake ThunderX2 ARM
af shell7 0.505 9.047 17.92 35 3.55 4.75 4.90 6.47
apache2 0.715 2.767 3.87 4 2.71 3.44 4.37 4.73
audikw 1 0.944 39.298 41.64 114 8.42 16.3 49.6 57.7
ecology2 1.000 2.998 3 3 2.95 3.05 4.84 5.09
Elasticity3D 60 0.648 50.758 78.33 81 5.90 11.3 14.3 20.2
Emilia 923 0.923 20.964 22.71 48 6.84 9.44 18.7 17.8
Fault 639 0.639 14.627 22.9 114 5.07 7.05 9.18 13.3
Geo 1438 1.438 32.297 22.46 48 9.95 13.2 32.0 27.9
Hook 1498 1.498 31.208 20.83 57 10.1 13.9 19.0 29.5
Laplace3D 100 1 6.94 6.94 7 3.34 4.21 6.21 6.71
ldoor 0.952 23.737 24.93 49 6.18 11.7 19.2 18.8
parabolic fem 0.526 2.1 3.99 7 2.18 3.02 4.44 4.07
PFlow 742 0.743 18.941 25.5 58 6.16 12.5 11.4 17.7
Serena 1.391 32.962 23.69 201 9.96 13.4 33.1 32.1
StocF-1465 1.465 11.235 7.67 80 6.48 10.5 13.4 17.0
thermal2 1.228 4.904 3.99 10 3.94 4.40 12.3 13.5
tmt sym 0.727 2.904 4 5 2.45 2.98 4.54 4.97

Figure 2. Cumulative speedups from four optimizations over the Kokkos
baseline implementation [3] for the 17 matrices on NVIDIA V100.

for graphs with |E|/|V | < 16 “SIMD” and “Packed Status”
versions run in equal time, as the heuristic is disabling SIMD.

B. Algorithm Scaling on Structured Problems

Table III gives the MIS-2 size and number of iterations
required for Algorithm 1 for varying grid sizes of structured

Table III
MIS-2 SIZE AND ITERATION COUNT FOR VARYING PROBLEM SIZES USING

STRUCTURED PROBLEMS

Problem |V | |MIS-2| Iters
Elasticity 30x30x30 81000 634 8
Elasticity 60x30x30 162000 1291 10
Elasticity 60x60x30 324000 2454 10
Elasticity 60x60x60 648000 4833 10
Laplace 50x50x50 125000 11469 9
Laplace 100x50x50 250000 22909 9
Laplace 100x100x50 500000 45333 9
Laplace 100x100x100 1000000 90041 10

matrices from two different problem types generated with the
Galeri package of Trilinos. We use structured problems here as
it is easy to vary the grid dimension and see how the quality of
the results and the number of iterations needed for MIS-2 vary
in response. Notice that the average degree of the Elasticity
and Laplace matrices are 81 and 7 respectively. This results
in 0.7% and 9% of vertices in MIS-2. The results show that
the number of iterations goes up by 1-2 iterations as the grid
size increases 4x-8x, and for a given problem type the MIS-
2 size remains proportional to |V |. This demonstrates good
algorithmic scaling as graph sizes increase.

C. Performance Portability and Scalability

Fig. 3 shows a profile of the portability of our MIS-2 imple-
mentation on the four architectures. Our algorithm is memory
bound, so ideal portability would mean running times inversely
proportional to each device’s theoretical memory bandwidth.
The global memory bandwidth is 1200 GB/s on the MI100,
and 900 GB/s on the V100. The Intel Skylake system has 238
GB/s of main memory bandwidth and the ThunderX2 ARM
system has 317 GB/s [13]. Here, we define the bandwidth
efficiency as the number of MIS-2 instances computed per
second, divided by the bandwidth. Given perfect portability,
this number would be the same across all platforms. For each
system and each problem, the fraction of efficiency in the



Figure 3. Bandwidth efficiency profiles of all four architectures on the 17
problems.

Figure 4. Strong scaling efficiency of MIS-2 on dual Intel Xeon Platinum
8160 for the 17 graphs. Ideal scaling is 1, where time ∝ 1/threads . Each
additional thread up to 48 (number of total physical cores) gives a speedup,
but if we attempt to use all 96 hyperthreads, the algorithm slows down.

profile plot is the efficiency, divided by the best efficiency for
that problem among the four platforms. In practice, the Intel
Skylake has the highest efficiency on all but one problem.

Figs. 4 and 5 demonstrate the strong scaling of the Kokkos
Kernels MIS-2 on Intel and ARM CPUs, respectively. Each
line corresponds to one of 17 matrices and relates the scaling
efficiency to the number of OpenMP threads. The ideal effi-
ciency is 1, where the running time is inversely proportional
to the number of threads. Both systems have two sockets and
two threads per physical core, our MIS-2 algorithm scales well
to the total number of physical cores (48 for Intel and 56 for
ARM). We observe 26.9x and 43.9x speedup (geometric mean)
on 48 and 56 threads on Intel and ARM respectively.

D. Performance comparison with CUSP and ViennaCL

Figs. 6 and 7 demonstrate our implemenation against two
previous state-of-the-art implementations of Bell’s algorithm
on V100 GPUs. The first compares our implementation against
CUSP [9] for the problem of computing an MIS-2 alone. The
second compares our MIS-2 plus the coarsening Algorithm 2
against the ViennaCL library [23]. This is because ViennaCL
exposes an interface for coarsening, but not for MIS-2 by itself.

Figure 5. Strong scaling efficiency of MIS-2 on dual ThunderX2 ARM CPU
for the 17 graphs. Very good scaling is achieved up to the 56 physical cores,
but as with Intel, using all 112 hardware threads does not yield a speedup.

Figure 6. MIS-2: Comparison of our approach with CUSP on V100 GPUs.
The vertical line is the mean speedup.

In both problems, and for both the CUDA and OpenCL back-
ends of ViennaCL, our algorithm achieves 3-8x speedup on
all seventeen matrices tested compared to ViennaCL. Kokkos
Kernels MIS-2 achieves 5-7x speedup compared to CUSP on
the 17 matrices.

E. Quality Comparison with CUSP and ViennaCL

Table IV compares the sizes of the MIS-2 produced by
Kokkos Kernels algorithm (Algorithm 1 / KK), CUSP, and
ViennaCL. For all graphs, size of MIS-2 from all the three im-
plementations are very similar. This shows our faster, portable,
implementation achieves the same quality results as the other
algorithms and their native implementations.

F. Multigrid integration and quality of aggregates

In this subsection we compare our two MIS-2 based ag-
gregation technique against three existing techniques in the
MueLu multigrid package of Trilinos [4]. The techniques are:
• Serial Agg: MueLu’s original aggregation algorithm. All

parts of setup execute sequentially on the host CPU.
Similar to ML’s non-MIS2 aggregation [28], but also
includes enhancements designed by Wiesner [29].



Figure 7. MIS-2 based coarsening: Comparison of our approach with
ViennaCL on V100 GPUs

Table IV
QUALITY OF MIS-2: NUMBER OF VERTICES IN MIS-2 FOR KOKKOS

KERNELS, CUSP, AND VIENNACL (HIGHER IS BETTER)

KK CUSP ViennaCL
af shell7 9708 9742 9772
ecology2 139431 140110 139813
Hook 1498 21469 20966 21077
PFlow 742 64880 64763 64767
thermal2 118217 118426 118327
apache2 67750 67802 67884
Elasticity3D 4833 4791 4784
Fault 639 7901 7835 7877
Laplace3D 90041 90198 90180
Serena 16575 16451 16439
tmt sym 68827 68769 68835
audikw 1 4263 4201 4186
Emilia 923 11445 11420 11427
Geo 1438 18168 18218 18161
ldoor 12464 12326 12369
parabolic fem 50396 50526 50530
StocF-1465 83419 83401 83274

• Serial D2C: Uses the Kokkos Kernels serial implemen-
tation of net-based distance-2 graph coloring [26]. The
vertices of a given color form a distance-2 independent
set. For each color, each vertex of that color is treated as
a root and forms an aggregate with its neighbors. Like
our Algorithm 3’s phase 2, a root only forms an aggregate
if it has sufficiently many unaggregated neighbors. The
coloring is reverse offloaded to host, but the aggregation
is done in parallel. The way leftover vertices are joined
to aggregates makes this algorithm nondeterministic.

• NB D2C: The same as Serial D2C, except the coloring is
also computed on device using a parallel implementation
of net-based coloring.

• MIS2 Basic: Algorithm 2.
• MIS2 Agg: Algorithm 3.
Each experiment sets up a multigrid V-cycle SA precondi-

tioner using the specified aggregation algorithm to coarsen at
all levels. The preconditioner was then used to solve a 1003

Laplace3D problem generated by MueLu to a tolerance of
10−12, using 2 sweeps of the Jacobi method as a smoother
and conjugate gradient (CG) as the main solver. The experi-
ments were run on a Power9 and NVIDIA V100 system. All

Table V
SUMMARY OF MUELU RESULTS FOR SEVERAL AGGREGATION

ALGORITHMS ON 1003 LAPLACE3D PROBLEM.

Iters Agg. Setup Solve Det.
Serial Agg 25 0.673 2.80 0.390 X
Serial D2C 23 0.125 0.601 0.383
NB D2C 31.3 0.274 0.734 0.447
MIS2 Basic 49 0.0226 0.471 0.562 X
MIS2 Agg 22 0.0352 0.538 0.370 X

Table VI
POINT VS. CLUSTER MULTICOLOR GAUSS-SEIDEL AS PRECONDITIONERS
FOR GMRES. WE COMPARE SETUP AND TOTAL APPLY TIME, AS WELL AS

GMRES ITERATIONS.

P. Setup C. Setup P. Apply C. Apply
(P. Iters) (C. Iters)

bodyy5 0.0154 0.00849 0.124 (187.0) 0.0616 (172.6)
Elasticity3D 60 0.174 0.0438 7.41 (328.2) 4.56 (337.4)
Geo 1438 0.209 0.0662 11.1 (408.5) 4.73 (388.4)
Laplace3D 100 0.0553 0.0409 0.664 (158.4) 0.567 (144.6)
Serena 0.215 0.0664 6.55 (227.0) 2.93 (219.2)

quantities are averaged over 50 trials.
Table V presents the results. “Iters” is the number of

iterations of the CG solver required to converge. “Agg”,
“Setup” and “Solve” are the total times spent in aggregation,
MueLu setup, and the preconditioned solve respectively. “Det.”
contains a checkmark for schemes which are deterministic.
The main reason for Serial Agg being much slower in setup
is that it takes a non-Kokkos (i.e. sequential) path in MueLu,
while the four others do not. During the solve, all five schemes
use the same Kokkos-based path. Our new algorithm MIS-2
Agg is 22x faster in aggregation than Serial Agg and results
in fewer iterations. Compared to parallel distance-2 coloring
(NB D2C) and MIS2 Basic, it results in 29% and 55% fewer
iterations ad as a result reduce solve time. Aside from MIS2
Basic, MIS2 Agg now has the fastest deterministic setup by a
factor of 5.2, and the fastest overall setup by 12%.

G. Cluster Multicolor Gauss-Seidel

In Table VI, we compare the Kokkos Kernels implementa-
tion of point multicolor symmetric Gauss-Seidel (SGS) [11]
against our cluster multicolor SGS method based on Algorithm
4, with Algorithm 3 used for coarsening. The SGS methods
are used as preconditioners for a GMRES solver. Only systems
which converge to a tolerance of 10−8 within 800 iterations
are included. Times were measured on a V100 GPU and
averaged over 50 trials. In all five systems, the cluster method
results in a speedup for both the setup and apply. For both
methods, the setup time is dominated by greedy graph coloring
[11], but the cluster method colors a smaller, coarsened graph.
The apply speedup for cluster is partly explained by the cluster
method reducing the number of iterations by 5% (geometric
mean).

VII. CONCLUSION AND FUTURE WORK

We presented a portable, parallel, deterministic algorithm
for the distance-2 maximal independent set problem. We
also demonstrated that our implementation is faster than the
existing state of the art implementations, and is performance



portable across several CPU and GPU architectures. We iso-
lated four key optimizations that explain the speedup, and
established more generally how they can be applied to a
wide variety of parallel graph algorithms. We developed a
graph coarsening scheme using the parallel MIS-2 algorithm.
We showed that our aggregation lowers setup time even
compared to other non-deterministic schemes in a multigrid
preconditioner [4]. We also describe an extension to the
multicolor Gauss-Seidel parallel preconditioner which uses our
MIS-2 based coarsening to improve convergence and reduce
both setup and apply time. In the future, we would like
to see our aggregation scheme integrated into the algebraic
multigrid in the PETSc library, since it already uses many other
features in Kokkos Kernels [21]. We also plan to evaluate our
graph coarsening algorithm in the context of multilevel graph
partitioning as a replacement for the MIS-2 based coarsening
algorithm of Bell et al. [3] as used in Gilbert et al. [12] in the
future.
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