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Introduction: engineered barrier system in a nuclear waste repository

Waste Package

Bentonite (inner)

Key benefits of bentonite: I
* Low hydraulic conductivity, and high self-sealing ability
* High retention capacity for radionuclides I



s | Introduction: montmorillonite

d-spacing

Al-centered octahedral sheet

Si-centered tetrahedral sheet

A Al atom is replaced by a Mg
atom: -1 charge

Applied Clay Science, 123, (2016), 239-258




Swelling/shrinking

Swelling/shrinking of montmorillonite (MMT) with increasing/decreasing relative
humidity

Increasing relative humidity (RH)
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Chipera et al, Advances in X-ray Analysis 2019, 39, 713-722.



s | Swelling

Transport-mechanical-chemical coupling effects

Vermiculite swelling in hydrogen peroxide

S. Hillier et al., Clay Minerals (2013) 48, 563



| Hydration/dehydration

Hydration

THE JOURNAL OF

PHYSICAL CHEMISTRY
L_ e t t e rS ® Cite This: J. Phys. Chem. Lett, 2019, 10, 3704-3709 pubs.acs.org/JPCL

Revealing Transition States during the Hydration of Clay Minerals
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ABSTRACT: A molecular-scale understanding of the tran-
sition between hydration states in clay minerals remains a
challenging problem because of the very fast stepwise swelling
process observed from X-ray diffraction (XRD) experiments.
XRD profile modeling assumes the coexistence of multiple
hydration states in a clay sample to fit the experimental XRD
pattern obtained under humid conditions. While XRD profile
modeling provides a macroscopic understanding of the
heterogeneous hydration structure of clay minerals, a |
microscopic model of the transition between hydration states Ej
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is still missing. Here, for the first time, we use molecular "‘ ?ﬁyﬁymﬁaﬁ?%%
dynamics simulation to investigate the transition states

between a dry interlayer, one-layer hydrate, and two-layer hydrate. We find that the hydrogen bonds that form across the
interlayer at the clay particle edge make an important contribution to the energy barrier to interlayer hydration, especially for

initial hydration.
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The focus of this talk;

dehydration
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‘ Method

Dehydration MD simulation

X CIayFF + edge
SPC Water
Dang FF for Na*
z T=300K
Unique features: P=1atm

Remove water molecules that move to the vacuum region
Deform of materials in the X direction

Simulate the transport, chemical,
mechanical coupling effects
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Method

Dehydration MD simulation m

TGA/DSC/XRD experiment

Vacuum

ClayFF

e, ————————— - — ]
e _
by v p » - . »

X
SPC Water
‘ Dang FF for Na*
z T=300K
Unique features: P=1atm

Remove water molecules that move to the vacuum region
Deform of materials in the X direction

Simulate the transport, chemical, Mass loss _ _
mechanical coupling effects In-situ XRD to monitor the d-spacing
Heat flow



Mass loss

MD dehydration simulation for 2W state
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Mass loss (water molecules)
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Water transport in the early dehydration process is fast.
The whole process is controlled by the evaporation. 9
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Transport-chemo-mechanical coupllng effect

strong correlation between Na*
coordination number and d-spacing

d-spacing (Angstrom)
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Dehydration simulation for TW state
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‘ Dehydration simulation for TW state ¢, . imental results
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Coordination number

Effect of cations
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Higher abundance of water
molecules in the hydration shell

leads to a slower decrease in d-
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15 ‘ Effect of layer charge distribution




| Effect of layer charge distribution
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Mass loss (water molecules)
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d-spacing (Angstrom)

Effect of layer charge distribution [Eml
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Thank you!
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