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MoS, (molybdenum disulfide) is a metal dichalcogenide that forms
hexagonal 2D layered sheets similar to graphene.

MoS, is a semiconductor used in microelectronics and also a catalyst
used in hydrodesulfurization and hydrogenation reactions.

Also widely used as a dry lubricant, often for aerospace applications.

Extremely low coefficient of friction.



A 2017 ARPA-E commissioned study estimated up to 22.8 Quads

¢ @ (25% of total consumption) can be saved in the US alone by
0 .. % deployment of friction & wear reducing technologies’
S, An annual savings potential of ~ 1.0 — 1.5% GDP
o st B ($250 billion / year in 2020) by reducing wear and friction?-
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Humidity increases the friction coefficient. Water reduces effectiveness of MoS, lubricants.
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 water from bulk diffuses up to surface (re-run-in)

GOAL: To understand water adsorption on MoS, in realistic conditions and
how that affects friction.

Curry et al, 2021. Tribology Letters, 69(3), pp.1-10.




First we compute water binding energy on monolayer of MoS, using DFT

MoS, generally thought to be slightly hydrophobic (contact angle > 70°). How does water interact with defects?

DFT calculations
VASP, PBE functional with
D3 dispersion

» -12 kJ/mol

No defect

» -22to-23 kJ/mol

» -31 kJ/mol
Defects bind water stronger than
pristine MoS,

Bobbitt, Chandross, in prep 5




Water Adsorption in Bulk MoS,

Adsorption on monolayer is informative but we also care
about water in bulk MoS,.

Consider 4 different structures with different
arrangements of defects.
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o Structure Il
Structurel: 1 defect (S vacancy or O substitution)
Structure ll: 2 defects on opposing sheets ‘W
Structure lll: 2 defects on opposing sheets, farther away rere : : )
Structure IV: 2 adjacent defects on same sheet ..‘:%‘i‘\*\‘;@‘}ﬁ“;ﬂ"

T LTI
LA

: )
el
O

Structure llI Structure IV

Bobbitt, Chandross, in prep 6




|_J/mol _| Total Enerz

_ C:;l"ie Water adsorption on S vacancies neutral or slightly favorable.
1 EE

B Adsorption on pristine or O dopants highly unfavorable due to
_f;; structure changes.

B

mm 1‘;2 Interlayer space too tight for water molecule, but S vacancy
69.3 permits adsorption.

Layers
pushed
apart

Water on O sub Water on S vacancy 3D periodic boundaries
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Batteas et al., ACS Nano 2020, 14, 12, 16939-16950
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Chance in vertical (Z) position
of Mo layer above the water.
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k/mol  Bulk  Surface  Diff Water is adsorbed to bulk MoS, during synthesis and is very

NoDefect 2215 2147 -6.8 difficult/impossible to remove.

Svacl -0.5 -1.3 -0.8

Svacll -1.9 -5.1 -3.1

S vac lll 2.0 1.8 3.9 Water adsorption under surface layer consistently more favorable
Svac IV -18.3 -21.5 -3.1 .

Osubl 134.1 128.1 -6.0 than in bulk MOSZ'

Osublll 44.3 39.0 -5.3

Osubl 1343 1277 66 This implies water will migrate from bulk to the surface layers,

O sub IV 69.3 65.1 -4.2

impacting the tribology.

Defect density: 1 (or 2) vacancies per 200 S atoms

Bulk Surface

Naturally occurring MoS,:  ~1% vacancies

Bobbitt, Chandross, in prep 10




Water’s effects on friction

Prior work at SNL developed a model for predicting friction in MoS, based on energy barriers from NEB

(nudged elastic bands) calculations. Mike Chandross
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Good agreement with experiments

Computed energy barriers

Curry, J.F., Hinkle, A.R., Babuska, T.F., Wilson, M.A., Dugger, M.T., Krick, B.A., Argibay, N. and Chandross, M., 2018.
ACS Applied Nano Materials, 1, pp.5401-5407.
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Water’s effects on friction

Rotation and sliding (commensurate) barriers are higher with water molecule present.

Previous modeling work indicates the rotational barrier is the most important.

Rotation
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Energy barriers computed in LAMMPS with a flake sliding across a layer containing 1 defect.
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Energy barriers are higher when water is present,
results in higher friction.

Water causes higher friction but not a large effect.

Bobbitt, Chandross, in prep




What happens to MoS, in real atmosphere?

How much water is really adsorbed in MoS, exposed to air?
How much do defects matter?

MoS, is often used in space, but satellites are manufactured on Earth

The atmosphere contains humidity.

Realistic temperatures: Atmosphere composition:
278 K (41 F) 78 % nitrogen

298 K (77 F) 21 % oxygen

313K (104 F) 1% Ar

0-95% RH  (0-7% H,0)

Grand canonical Monte Carlo simulations using Lennard-Jones GCMC simulations done in RASPA
potentials
Multipurpose simulation code developed by Randy
TraPPE for O, and N, Snurr and David Dubbeldam.
TIP3P for water
Mo and S taken from Gu et al, Physical Chemistry Chemical https://github.com/iRASPA/RASPA2

Physics 2017, 19, 3039-3045.

Bobbitt, Chandross, in prep 14




Pristine MoS, is hydrophobic.

About 1% S vacancies, adsorbed phase is 60-80% water.
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Adding a moderate density of defects greatly increases water uptake.
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Adsorbed phase contains less water than gas phase.

This indicates pristine MoS, is hydrophobic. Adding defects makes it hydrophobic.

0.9 0.9
0.8 0.2 o o ©
E 820080600000 ® %9 0883 g 8 * 0 s 8 4 . ; s s e8¢ : P_—
0.7 0.7 o0 °°
o H,0, ads e © o H;0, ads
0.6 0.6 e
< ® H,0, gas g ® H,0, gas
E 0.5 o Na, ads E 0.5 o N3, ads
t; 0.4 * Na, gas % 0.4 * M;, gas
= o 03, ads = o O, ads
0.3 0.3 °
$88888833% * Ow e .03 O
=] =} =]
02 3 8888383 3 Ar, ads 028 seececsiiocenngnssse Ar, ads
0.1 Ar, gas 0.1 °© o o Ar, gas
2 0 0 o0 o o o .
00 68 8 & 2 B R | 00 « = e A m mom e e § 99 e 83
0 20 40 0 20 40 60 80 100
%RH %RH
Defect free MoS,, 313 K 2.3 x 1013/cm? defects, 313 K

Adding a moderate density of defects greatly increases water uptake.
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Heat of Adsorption (eV)

Water o 0 ar Water heat of adsorption ~3 times higher than other gases.
. . . Water will dominate most favorable sites (defects)
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-0.453
Adsorbate-adsorbate increases exponentially at high
humidity.
. Indicates water clustering (wategf-water interactions).
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Two random snapshots
2.3 x 1013/cm? defects
298 K, 50% RH
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Connecting Water to Friction

“EBI'_Ie:I;l&n R -E'\-’AC
1. Friction measurements indicate HIGHER friction in humid environment. L)
i
2. MD simulations indicate LOWER friction for LARGER flake sizes. N
VEM l-
HOMO
3. DFT simulations indicate HIGHER work function with LARGER flake sizes.
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Curry, J.F., Ohta, T., DelRio, F.W., Mantos, P., Jones, M.R., Babuska, T.F., Bobbitt, N.S., Argibay, N., Krick, B.A.,

Dugger, M.T. and Chandross, M., 2021. Tribology Letters, 69(3), pp.1-10.
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Connecting Water to Friction
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1. Friction measurements indicate HIGHER friction in humid environment.
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2. MD simulations indicate LOWER friction for LARGER flake sizes.

Static Friction Coefficient
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3. DFT simulations indicate HIGHER work function with LARGER flake sizes. B B B e

=
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Relative Humidity (%) at Specimen Temperature

4. Work function (measured by PEEM) LOWER in humid environments.
a. This process is reversible which implies physisorption not oxidation.

Legend Varying environment; F,, ~ 0.20 N, 250 cycles
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0.10 worn
005 region
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Curry, J.F., Ohta, T., DelRio, F.W., Mantos, P., Jones, M.R., Babuska, T.F., Bobbitt, N.S., Argibay, N., Krick, B.A.,
Dugger, M.T. and Chandross, M., 2021. Tribology Letters, 69(3), pp.1-10.




0.20 ] T , T 1500

N e

i R, In dry conditions, MoS, flakes self-order
a2 P into large lamellae: good for low friction.
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This work first to provide a cohesive explanation of
how water increases friction in MoS, using both
experiments and simulation.

Curry, J.F., Ohta, T., DelRio, F.W., Mantos, P., Jones, M.R., Babuska, T.F., Bobbitt, N.S., Argibay, N., Krick, B.A.,
Dugger, M.T. and Chandross, M., 2021. Tribology Letters, 69(3), pp.1-10.




Conclusions:
Adsorption of environmental species on MoS,

1. Pristine MoS, generally hydrophobic but defects greatly increase
affinity for water.

2. All defect sites adsorb water at low (5%) relative humidity.

P

3. Adsorbed water on defect sites increases barrier to sliding and
therefore friction coefficient.

4. Water interrupts formation of large flakes which results in higher
friction coefficient.

L

313 K, 80% RH
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Thanks for listening!
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We are hiring postdocs! 2wz
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THE SECRET ARCHIVES




Future work: MoS,/Au composites

Goalisto |m.prove MoS, resistance to humidity by compositing with m Avg Diff BE (k)/mol) [3 sites]
other materials, e.g. Au

No Defects +4.8
MoS,/Au composites are known to work but unclear why. S vacancy +2.8
O substitution +1.3

Early DFT calculations suggest water
affinity is weaker when flake is on Au
substrate.

MoS,/Au composite might be more
resistant to humidity.

Mo,,S, flake Mo,,S¢ flake on Aulll




Chance in vertical (Z) position of Mo
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In pristine MoS,, water sits in hollow

between Mo atoms

O sub

N sub

No defect

29

Forms H-bond with N and O dopants
Water sits on site of S vacancy

2 S vacancy, stack

S sub Mo

2 S vacancy, adj
S adatom

\

1S vacancy
Mo vacancy
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At a given partial pressure of water, uptake decreases with increasing temperature.

At given %RH, uptake decreases with temperature due to increased vapor pressure.
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Adsorbed phase contains less water than gas phase.

This indicates pristine MoS, is hydrophobic. Adding defects makes it hydrophobic.
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Adding a moderate density of defects greatly increases water uptake.
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298 K

Total gas-gas (guest-guest) and gas-MoS, (guest-host) energy (all components) 2.3 x 1013 cm-2 defects
%RH
2 . . :
S 0% RH contains no water. No O,-N,,0,-0,, N,-N, interactions.
, 0 40 60 80 95
Water adsorption largely driven by Coulomb interactions.
4 B gas-MoS2 Coulomb
Energy (eV) g - . .. . .
= gas ooz vl Significant water-water and water-MoS, interactions.
-8 gas-gas Coulomb
10 W gas-gas vdW
-12
14
-16
Heat of Adsorption (eV) . . .
Woter " 02 o Water heat of adsorption ~3 times higher than other gases.
! ! ! Water will dominate most favorable sites (defects)

-0.453
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Adsorption isotherms, 298 K
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Water uptake increases with defect density.

Adsorbate-MoS, energy remains fairly linear while
adsorbate-adsorbate increases exponentially.

Indicates water clustering (water-water interactions).

Adsorbate-adsorbate energy
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Total gas-gas (guest-guest) and gas-MoS, (guest-host) energy (all components)

eV guest-guest guest-host
#RH___ Total  vdW _ Coulomb Total  vdW _ Coulomb 0% RH contains no water. No O,-N, 0,-0,, N,-N, interactions.
0 0.00 0.00 0.00 -0.91 -0.90 0.00
20 -0.92 0.25 -1.17 -9.55 -0.18 -9.36
40 144 038 "1.82 991 031 -9.61 Water adsorption largely driven by Coulomb interactions.
60 -1.89 0.50 -2.39 -10.19 -0.40 -9.79
80 -2.37 0.62 -2.99 -10.39 -0.51 -9.87
95 266 0.69 -3.35 -10.54 059 -9.95 Significant water-water and water-MoS2 interactions.
Avg heat of adsorption
%RH Water N, (08 Ar
5 -0.453 -0.145 -0.142 -0.144
20 -0.438 -0.145 -0.142 -0.144 . ~ . .
20 00 0184 0140 0143 Water heat of adsorption ~3 times higher than other gases.
60 -0.407 -0.145 -0.143 -0.144
80 0404 0145 0143 -0.145 Water will dominate most favorable sites (defects)
95 -0.401 -0.146 -0.143 -0.149
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o Fig. 1 Energy diagram of a semiconductor with flat bands to the surface,
4'8 L m _4___.————'-_' - Band edges (CBM/LUMO and VBM/HOMO). vacuum level Eyec. work
function 'WF, energy gap E;, lonization energy IE and electron affinity EA
are defined,
4 6 1 L 1 M 1 L 1

layer thickness

DFT calculations indicate work function of flakes increases with size.
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