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P/ Hyperspectral Imagery Data

« Contains the following:
- X, Ydata

 Reflectance
«  Wavelengths
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Hyperspectral Imagery Data
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« Targets: Train on Green Paint 1
« Split up by x,y values
« Classify each of these by whether it contains target
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2. Semi-Supervised Learning
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Low-Shot Learning




/" What is Low-Shot Learning?
3
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We want to train on one material and extend to new ones

Inserted Target Materials
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/" Siamese Networks
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« Learn Distances between datapoints
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Siamese Networks - Idea
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* End up with an embedding space

CNN 1::::'

* Hopefully, we will get any similar datapoints

to a similar location in embedding space Vector Space
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ROC Scores, Green vs Yellow Paint

/" Low-Shot Learning Results
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Precision Scores, Green vs Yellow Paint
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Semi-Supervised
Learning




What is Semi-Supervised Learning?

We have several datasets, not all of them are labeled. We want to be able to use this data.

Temperate zone




P Mean Teacher

 Student and Teacher models

Teacher updates each round as mean of students

Cross-Entropy Loss
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/" Virtual Adversarial Training
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Perturb all datapoints towards the boundary and penalize if this changes the prediction
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P Exponential Averaging Adversarial Training

e Combination of MT and VAT
« Students are trained with VAT
« Teacher remains the same
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Results

ROC/ALC Scors
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Results

Precision score on Green Paint Precision score on Yellow Paint
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Uncertainty
Quantification




Uncertainty Quantification

/,

We have targets of different sizes and visibility. We want a way to categorize how certain the
model is the target exists




/ Bootstrapping

Classifer
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Classifer

Ensemble classifer

Original Data

Bootstrapping

Aggregating

Bagging




P Problems - Hyperparameters

How do we define which values are classified with high confidence?

« Currently defining 3 hyperparameters, alpha, beta, gamma
« Alpha: Upper cut off

 Beta:; Lower cut off
« Gamma: Standard Deviation cut off
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Results

10 roc curve for all data TROP_1200.h5 test set

100.0% - AUC: 0.97
90.0% - AUC: 0.94
80.0% - AUC: 0.93
70.0% - AUC: 0.93
60.0% - AUC: 0.92
530.0% - AUC: 0.91
40.0% - AUC: 0.9
30.0% - AUC: 0.89
20.0% - AUC: 087
10.0% - AUC: 0.83
5.0% - AUC: 0.78
2.5% - AUC: 0.73
1.0% - AUC: 0.61
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CFAR Score 0025  [0.25-0.75 0.75-1

Total 0.68 0.995 0.998
Good 0.233 1 1

Bad 0.808 0.986 0.826
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Questions?




