N
=

Density n«'v nenc
“in Si/SiGe Bilayers

.

Sessmn Integ h intu
!
s
;1 'il'

i ; Dawst()hen; Suya
Chqang, Erik Nielso
_-_D%mmlque Larocﬁef‘é;

e T
l e, %:ﬁ*irzf )‘uﬂrq -‘fff“ﬁ-‘m_fﬂ'

i AR

_,‘._‘-.. T L

Hi'if, ;f”"_h
ﬁ"h‘"ﬂﬂw*"ﬂ

S b LE

I E‘.‘* ‘,{- =

' e

S 3 -




Background E

Motivation

» Si-based heterostructures — CMOS technology
« SiGe-based heterostructures
» Undoped structure with high p/low

disorder

28Si (nuclear spin free) — decoherence

* Quantum computing

 Exciton Condensation o

Resistanceless Transistors - B holes
« Valley Splitting (VS)

« Valleytronics & Si qubit

Bilayer

Zefang Wang, Cornell University



Device & Operation

Growth & Fabrication

* Undoped & Assymetric Double Quantum Well

« HFET w/ Hall bar geometry patterned using standard fabrication processes

* Front and BACK gate capabilities
« Hall densities from 6.8 x 109 cm2to 3.42 x 10" cm2

« Hall mobility corresponding to 3.08 x 105 cm?/(V - s)
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Results

Bilayer Behavior

* The mobility increases with Hall density until the crossover density, 8.22 x
10'% cm-=2. (V,,, = 0.53 V)

* The mobility then drops to a minimum of 1.06 x 105 cm?/(V - s) due to inter-

top

layer scattering and indicates the bilayer system was formed.
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Results

Schrodinger-Poisson Simulations

Density (m~3)

le2?2

* Ag 5= Eps - Eg (Single Electron Tunnel Splitting)

An iterative, self-consistent SP simulation reproduces n

* Nominal growth parameters
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« Band gaps were artificially increased at the heterostructure’s spacers
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Results

Front Gate — Variable Imbalanced
—Densities

¢ v; =1,2,4 p,, minima evolves with n,,, and B

* Ry =p,, = R/v=hle2v

. 1.2 20
50 Vi, =060V TR Q
V=0V — 110 |18
_ AT pe=122x100cm 108 &
=N ° o 16
G 3 V=2 06 = =
] 0a 7 914
S e 2 .
| 10.2 2
1 +—
: 10.0 C 10
0

6000

5000

4000

3000

2000

1000

Pxx (/)



Results m

Back Gate - Matched Densities

* Tuned back gate to achieve matched density

« Smaller range of available total densities possible

* v;=1,24 p,, minima evolves with n,;, and B
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Background

Interlayer Effects

Spontaneous Interlayer Coherence

* Easy-plane ferromagnet or a Bose-Einstein
condensate of excitons
* Quantum phase transition to a compressible state

above some critical layer spacing, d //¢,. [,

=(h4€B)™] >
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Murphy SQ, et al. Phys. Rev. Lett. 72:728-31 (1994)

Single Particle Tunneling Gap

* When tunneling is sufficiently strong, Agag = Aas
— AS
* Ag,g decreases with increased barrier height

and width
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Results

Degeneracies

« Single layer regime: spins (1]) and valleys (+/-)

« Valley splitting and spin is linear with n,(B)
s @413T,E,=135K<E,=2.79K > v;=1 (v;=2) attributed to valley (spin)

« Bilayer regime: layer (S/AS) degree of freedom

» Single particle tunneling gap, Ag,s, can be estimated from SP
* No LL crossing when transitioning into the bilayer state
* v;=1is attributed to valley

e v;=2is attributed to interlayer effects
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Extracted Activation Gaps

Results

* The activation gaps were extracted through temperature dependence scans

* Non-linear behavior for both v; = 1 and v; = 2 at variable imbalanced and matched

densities

» Valley [1], spin and Landau gaps should evolve linearly to 1t order w/ B in the absence of
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E,,, Results

Results

Fan diagram generated by SP simulation: 4 energy sub-levels per LL since

VS omitted

Variable Imbalanced

Densities:
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Interpreting v, = 2

Analysis

d/l,

1.1F

1.0F

09}

0.8}

Interplay between spin splitting and interlayer effects, Ag g & SIC

Device: d/f, = [0.62-1.24] & e?/ef, = 5 x 10 indicating SIC is possible

From theory, A, =E,-E,-T"=E, - A, -2l

A, unknown at low n(B)
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Analysis

Interpreting v, = 2

* Neither Ag,g, spin splitting, nor LL spacing alone reproduces A,.
« Strength of A, 1, induced by SIC:
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Valley Splitting & v = 1 T UF

« Single Layer: Disorder broadening, I' = 0.327 K and linear coefficient, cg = 0.29 K/T
« A=E,-T=cgB-T
» The bilayer dependence decreases and nearly flattens out (not understood)

« Si may exhibit large valley splitting at low B or spontaneous valley polarization
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Conclusion

Thank you for your attention!
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Analysis E
Summary

Dual gated undoped Si/SiGe bilayer

Single & Bilayer quantum Hall states at v;. =1,2

Evidence of Exciton Condensation warrants further investigation
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Background m

Valley Splitting in Single Layers

* In bulk Si, there is a 6-fold valley degeneracy
» Tensile strain reduces it to 2-fold
* Quantum confinement from the sharp quantum well interface lifts the
degeneracy
e Atomic-scale disorder suppresses valley splitting

« Large valley splitting may be important for guantum computing

"Strained” Silicon
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6-fold degenerate

degenerate
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Device & Operation m

Achieving Matched Density

le22
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Device & Operation

Achieving Matched Density

* AsV,, increased, n, increases until it saturates at n

top crossover

* n,, stays constant past n due to top layer screening (change V,,)

crossover

* % =N —n unaffected by V, due to bottom layer screening)

0
crossover (n top

. = —no
ThUS, nbot ntot n top

« Matched density is achieved by collating the density dependence on the gates.

Viep (V) Viot (V) mgoe (107 em™2)  ngep (10" em™2)  nper (102 em™2) % Difference

0.62 -26.525 11.24 .77 0.47 0.47
0.63 -18.976 12.79 6.43 6.36 1.22
0.64 -12.368 14.14 7.11 7.03 1.18
0.65 -6.375 15.37 7.84 7.53 4.04
0.66 -1.375 16.66 8.44 8.22 2.74
0.67 3.457 17.7 9.09 8.61 5.5
0.62*  -26.525* 11.57 277 .8 0.53
0.625% -22.613* 12.24 6.08 6.16 1.33
0.63*  -18.976* 13.05 6.43 6.62 2.76

0.64*  -12.368* 14.45 7.11 7.34 3.16




Density Imbalance

* v;=n4/(eB/h) & Av =v,-v,

* Avivy=(v4v,)2=0.5 @ ny,; = 11.07 x 10"° cm™

Device & Operation

« The onset of A,'s magnitude increase coincides w/ Av/v; = 0.5
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Analysis

A vs B

Ry = Py, = Ry/V = hie?v (1980)  [v; = n,/(eB/h)]

Variable Imbalanced Matched
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Future Work

Independent Contacts

* Designing a scheme to independently contact both layers simultaneously

A combination of top/bottom accumulation gates + density gates

* Global Top (Bot) Gate: Blue (Red) Contact Top (Bot) Gate: Green (Yellow)

Unlocks tunneling conductance, Coulomb drag, and counterflow measurements
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NRF Fabrication e

Measuring Si/SiGe devices over a larger density range

Reduce the distance between the bottom QW and the bottom gate
Utilizing larger magnetic fields

Fabricating Ge/SiGe bilayer devices at NRF

*  EBASE[M technique (Tetramethylammonium hydroxide (TMAH))

Valley splitting dependence using a tilted magnetic field
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[1] Weckwerth, M. V., et al. Superlattices and Microstruct. 20.4 (1996)
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