This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Exploring Spatial Indexing for Accelerated Feature
Retrieval in HPC

Margaret Lawson
Sandia National Laboratories &
Univ. of Illinois at Urbana-Champaign
mlawso@sandia.gov

Abstract—Despite the critical role that range queries play
in analysis and visualization for HPC applications, there has
been no comprehensive analysis of indices that are designed
to accelerate range queries and the extent to which they are
viable in HPC. In this paper we present the first such evaluation,
examining 20 open-source C and C++ libraries that support
range queries. Contributions of this paper include answering the
following questions: which of the implementations are viable in
HPC, how do these libraries compare in terms of build time,
query time, memory usage, and scalability, what are other trade-
offs between these implementations, is there a single overall best
solution, and when does a brute force solution offer the best
performance? We also share key insights learned during this
process that can assist both HPC application scientists and spatial
index developers. While we find that there is no single best
solution, three libraries, Boost, CGAL and R-tree, offer some of
the best performance, scalability, memory overheads, and support
for different mesh types. We find several areas where the spatial
indices could be substantially improved: better performance when
there are a large number of query matches, reduced memory
overheads, and better support for GPUs or other accelerators.

Index Terms—geometric range searching, spatial indexing, k-d
tree, R-tree, octree

I. INTRODUCTION

During analysis and visualization, HPC application scientists
often need to extract particular spatial subsets of their data.
Scientists may need to extract these subsets for a number
of reasons including sub-sampling [1l], to perform areal
interpolation [2], [3], or to perform spatial correlations [4].
Scientists may also extract spatial subsets that correspond to
regions or features of interest. This can allow scientists to
concentrate their analysis and visualization on more interesting
data or to use different analysis routines depending on the
type of region. Examples of regions that may be extracted
include application boundaries and surfaces [5], regions of the
brain in neuroscience imagery [6]], counties or other regional
boundaries in satellite imagery [7]], regions with different flow
types in a fluid dynamics simulation [8], and regions with
different chemical properties in a combustion simulation [9]].
Examples of spatial features of interest that may be extracted
include supernovae in astronomy [[10]], blood vessels, lesions,
and areas of inflammation in pathology imagery [11]], shocks
in a fluid simulation [[7]], flame fronts, extinction events and
vortices in a combustion simulation [9], and tropical storms
in a climate simulation [12]. Extracting spatial subsets is thus

William Gropp
Univ. of Illinois at Urbana-Champaign
wgropp @illinois.edu

Jay Lofstead
Sandia National Laboratories
gflofst@sandia.gov

a critical component of many different types of analysis and
visualization routines for a wide range of HPC applications.

Extracting a particular spatial subset is trivial for regular
meshes (meshes in which the cells are congruent parallelotopes)
where a single, simple function can be used to map from a
spatial coordinate to a data array offset. In the simplest case
(a Cartesian mesh), the mesh coordinates will be the same as
the array indices. In contrast, for unstructured meshes (meshes
without implied neighborhood connectivity), this operation is
very computationally intensive. Without any form of index,
scientists will have to perform a linear (brute force) search over
all mesh points or elements for each region they want to extract.
With petascale simulations already using meshes that can range
from tens of billions [13]], [[14] to trillions [15] of elements and
with the impending arrival of exascale machines [16]], this kind
of linear search, which may need to be performed thousands
or millions of times during analysis and visualization, typically
represents a significant inefficiency that can delay the path to
scientific discovery. A lot of research has been done to develop
spatial indices that can accelerate this type of search (known
as a range query) to help scientists quickly identify what
mesh points or elements fall within a given region. However,
there has been no comprehensive analysis of spatial index
implementations that are designed to accelerate range queries
and the extent to which they are viable in an HPC setting. To
be viable in an HPC setting, a spatial indexing library must
have good performance for building the index and performing
queries, good scalability, and moderate memory overheads. It
is important for the index to have moderate memory overheads
since the index will provide the best performance when stored
in memory, many applications require significant amounts of
memory (for MPI, for the mesh, for variable data, etc.) and
nodes have limited amounts of memory.

In this paper, we present the first comprehensive review of
spatial index implementations that support range queries. We
also provide scientists with the information they need to decide
when to use a spatial index for range querying and which spatial
index implementation will be best suited to their use case. This
information can help scientists accelerate range queries by
several orders of magnitude and thereby greatly accelerate
their analysis routines and the discovery process. Contributions
of this paper include presenting a thorough analysis of 20 free,
open-source C and C++ libraries that support range queries with

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-2691C

expected sub-linear query times, sharing key insights learned
during this process, and answering the following questions:

1) Which of the implementations are viable in HPC?

2) How do these libraries compare in terms of build time,
query time, and memory usage at different scales?

3) Is there a single overall best solution?

4) When should a brute force solution be used?

The rest of this paper is organized as follows. Section
discusses related work. Section provides an overview of
the evaluated libraries. Section [IV] presents the evaluation and
results. Finally, Section |V|provides discussion, offers additional
insights, and presents areas for future work.

II. RELATED WORK

Range queries have been extensively studied in many
different branches of computer science including privacy and
security, mobile computing, networks, cloud computing, and
databases. Below we provide an overview of two categories
of related work that are most related to the work presented
here: theoretical research done on geometric range searching
and search structures and research that performs a comparison
of several different spatial indexing libraries.

A. Theory: Geometric Range Searching and Search Structures

Efficient geometric range searching has been the focus of
a significant amount of research in the theoretical branch of
computer science. A good overview of this work can be found
n [17], [18], [19], [20]. This work has invented a number of
geometric search structures, and here we present an overview
of the three that are most commonly supported by the libraries
we evaluate in this paper: octrees, k-d trees, and R-trees.

1) Octrees: An octree [21] is a tree in which each internal
node has exactly eight children and which is not necessarily
balanced. An octree can either be used to recursively partition
a 3D space into eight octants (region-based octrees) or to
partition a set of 3D points based on their coordinates (point-
based octrees). Internally, octrees typically store point data
only in the leaf nodes for region-based octrees and and in both
the leaf nodes and internal nodes for point-based octrees [22].

2) K-d trees: K-d trees [23] are binary trees that store k-
dimensional data and represent a recursive subdivision of this
data using (k — 1)-dimensional hyperplanes. Each (non-leaf)
level in the tree corresponds to one of the k dimensions, and
each internal node at that level represents a splitting hyperplane
for that dimension. K-trees are sensitive to the order in which
points are inserted and are not necessarily balanced. Often the
data will be split before the median point along the longest
side of the node (the sliding midpoint rule).

3) R-trees: R-trees [24]] are balanced trees that contain a
hierarchy of d-dimensional boxes, where each child node is
contained in the box represented by its parent. Depending on the
implementation, these partitions may overlap. The leaves either
store a d-dimensional point or the d-dimensional minimum
bounding box of the objects stored in the leaf. These objects
may be a set of points or other shapes. R-trees have a minimum
and maximum branching factor for all internal nodes (apart

from the root), and there are algorithms designed to build
optimal R-trees using bulk (static) construction [25]], [26]. R*-
trees are an R-tree variant that is designed to minimize coverage
and spatial overlap between internal nodes.

B. Comparisons of Libraries Supporting Range Queries

Although many research efforts have implemented data
structures that support range queries, almost no work has
performed a comparative evaluation of several spatial indexing
libraries. One project performed a comparison of nearest
neighbor search implementations and included some evaluation
of range queries [27]. However, this work only considers six
of the libraries we evaluate here, collects range query results
only for artificial datasets containing 60,000 points, and was
performed almost a decade ago.

ITI. SPATIAL INDEXING LIBRARIES OVERVIEW

We evaluate 20 libraries that support range queries. To be
included in this study, a library has to: provide bindings for
C or C++, offer a free, open-source version, and offer spatial
indexing that supports range querying (with expected sub-linear
query times). We limit our search to libraries with C or C++
bindings since these are the languages most commonly used
in HPC for analysis and visualization tasks [28]], [29]. Only
one library, LEDA [30], is excluded for failing to meet the
free, open-source requirement. LEDA offers a free version, but
range queries are only offered in its paid version, which costs
3000 euros for pure research efforts. We leave for future work
evaluating libraries that offer other language bindings.

Table [[| contains basic information about the libraries. In the
evaluation, we perform box queries since this is the type of
query used most commonly in analysis and visualization. For
libraries that do not support box queries, we use a sphere (or
radius) that encompasses the box, and then perform a filtering
step to ensure exact matches are returned. This will result in a
slight performance penalty for these libraries.

Note that some of the libraries share the same name or
similar names (e.g., KDTREE and KDTREE2, libkdtree++ and
libkdtree). We have added a number (shown in parentheses)
after some of these library names to help disambiguate them.
For the rest of the paper, we will refer to these libraries using
the name appended with the number (without the parentheses).

Insight: few libraries can store mesh elements (shapes/boxes).
Since many variables are calculated per mesh element, this
is a significant limitation.

For more information about these libraries, readers can look
at the Git repository for this project [S0].

IV. EVALUATION AND RESULTS

This section presents an overview of the evaluation setup
including the hardware and software, datasets, and scales used
in testing. We also present the performance and scalability
results. HPC application data is typically collected for each
mesh node or mesh element. This is why we perform an
evaluation for both mesh points and elements.

TABLE I: Basic info. about the libraries evaluated in this paper

. Tree | Search Data Leaf
Library Ver. .
type type types size
3DTK [31] - |k-d tree| Box Points 20
ALGLIB [32] 3.17.0 | k-d tree| Box Points 8
ANN [33] 1.1.2 | k-d tree KNI\,I W Points 200
radius
ANN [33] 1.1.2 | BD-tree KN ™1 poings | 200
radius
Boost [34] 1.74.0| R-tree Box | Points, boxes | 200
CGAL [35] 5.2.0 | k-d tree | Box Points 200
CGAL [35] 5.2.0 | Box Box Points
CGAL [35] 5.2.0 |Segment| Box Boxes
CGAL [35] 5.2.0 | R-tree Box |Points, shapes
FLANN [36] 1.9.1 | k-d tree | Sphere Points 200
KDTREEQ) [37] - k-d tree | Sphere Points 1
KDTREE2 [38] - | k-d tree | Sphere Points 200
KDTREE(3) [39] - k-d tree | Sphere Points 200
KDTREE4) [40] | 0.5.7 | k-d tree | Sphere Points 1
libkdtree++ [41] - k-d tree | Sphere Points 1
libkdtree(2) [42] - k-d tree| Box Points 1
. KNN w. .
libnabo [27] 1.0.7 | k-d tree . Points 200
radius
libspatialindex [43]| 1.9.3 | R*-tree | Box Boxes 200
nanoflann [44] 1.3.2 | k-d tree | Sphere Points 200
Octree [45] - octree | Sphere Points 200
PCL [46] 1.11.1| k-d tree | Sphere Points 15
PCL [46] 1.11.1| octree Box Points 20
PicoTree [47] 0.5.2 |k-d tree| Box Points 20
R-tree [48] - R-tree Box Boxes 20
Spatial [49] 2.1.8 | k-d tree| Box | Points, boxes | 1

A. Experimental Setup

All experiments are run on the Vortex machine at Sandia
National Labs. Vortex uses RHEL7, and has the following
per node: 318 GB high-bandwidth DRAM and dual socket
IBM POWERY9 CPUs with 22 cores/socket and 4 hardware
threads per core (176 total). We use GCC 10.2.0 to compile
all of the libraries apart from PCL, which we can only build
with GCC 8.3.1 on Vortex. We use four different evaluation
setups, which are described in Table I} All experiments use the
same mesh, which was created for a typical [S1] turbulent low-
Mach study that includes solution verification. The turbulent
low-Mach study uses meshes that range from around 150
million to 2 billion nodes and elements. The mesh we use is
unstructured and has 152.7 million nodes and 152.1 million
hexahedral elements. The coordinates are 8 byte doubles. It
should be noted that there is no standard in HPC for the
number of mesh points or elements assigned per process during
domain decomposition. The number will depend on a number
of factors such as the computational intensity of the application,
the memory per node, and the number of compute hours the
scientist has access to. However, using between 10,000 and
100,000 nodes or elements per process during a simulation

is common [52], [53], [54], [55]. Then, during analysis and
visualization, scientists will often use a much smaller number
of processes (10% or fewer) [36], [S7], [S8] thus resulting in
upwards of 100,000 to 1,000,000 mesh nodes or elements
per process. This is further evidenced by the fact that analysis
and visualization clusters often have far fewer cores and nodes
than compute clusters [59], [60]. We therefore perform “small”
scale evaluation with approximately 1,000,000 mesh nodes or
elements per process to reflect this common range, and “large”
scale evaluation with approximately 10,000,000 mesh nodes
or elements per process to reflect more extreme use cases.
We use OpenMPI 4.1.0 with one hardware thread per (MPI)
process. Apart from the weak scaling results, all evaluations
use a single node. But, as the weak scaling results demonstrate
in Section these results should hold at any scale if the
number of processes per node is held constant. This is because
each process performs entirely independent work without any
need for message passing or coordination, and the indices are
also kept entirely in memory (eliminating PFS contention).

TABLE II: Experiment setups

Mesh points Mesh elements

160 procs. (small scale) | 1,227,411 / proc. | 1,087,807 / proc.

16 procs. (large scale) 10,163,37 / proc. | 10,878,078 / proc.

B. Performance Evaluations

Each performance evaluation consists of two basic parts.
First, each process creates an in-memory instance of the data
structure being evaluated and inserts the mesh coordinates or
elements for its subdomain (assigned portion of the simulation
space). Second, each process performs a set of queries at
four different sizes, which we refer to as extra-small, small,
medium and large. These queries return approximately 0.001%,
0.1% 1%, and 10% of the data. Each process performs 10,000
queries that are extra-small, 10,000 that are small, 10,000 that
are medium, and 1,000 that are large. This allows us to evaluate
how the spatial indices perform for retrieving features or regions
of interest that range from very small to very large. This testing
workload is designed to reflect the real-world scenario described
and cited in the introduction: when a scientist performing
analysis or visualization with a complex mesh type needs to
extract data for particular regions of interest. In the large scale
evaluation, we evaluate all libraries that perform within a factor
of 10x of the best performing library for each of the query
sizes. This helps us to identify which libraries perform “best”
across different query sizes and at different scales. For all
libraries that allow the user to set a maximum leaf size, we test
leaf sizes of 20 and 200. For space reasons, we only present the
best result for each library. The full set of results can be found
in the Git repository for this project [50]. Several libraries also
offer different insertion algorithms or splitting strategies (for
k-d or BD trees). However, we did not find any significant
performance differences between these algorithms and have
therefore omitted these results to save space. One exception is
that we use Boost’s STR packing algorithm for all of the Boost

tests since it results in dramatically improved results for data
that can be bulk loaded (like mesh data). For libraries that offer
both static and dynamic trees, we use static trees since the
mesh we use in evaluation is static. We perform three runs for
each configuration and average the results. After completing
the timing results, we also collect memory results using the
Massif heap profiler [61]] from Valgrind 3.16.1 [62]. For these
memory results, we present data only on the construction of

the tree since memory increases during querying are transient.

We exclude memory allocated as a result of reading in the
mesh nodes or elements from the mesh file. We run these tests
on a single process that has the amount of data closest to the
average (within 3% of the global average).

In addition to the libraries, we evaluate a brute force solution.

In the build phase, the solution copies the 2D vector of mesh
points or elements using the assignment operator. In reality, no
such copy would be required, we merely include this result as
a point of comparison. For the queries, the brute force solution
performs a linear search checking for each point or element if
it intersects the query range. Evaluating the brute force solution
allows us to determine how much of a performance advantage
the spatial indices offer and to evaluate whether this advantage
is sufficient to justify the memory requirements of the index.

In each of the result tables below, for the build throughput
(insertions per second), and the query throughput (queries per
second), we classify a library’s performance as fast (green
cell with bolded text) if is within 10x of the best performing
library for build time or for the given query size. We classify
the performance as moderate (yellow with plain text) if it
is within 100x. All other results are classified as slow (red
with underlined text). For memory usage, we classify any
configuration that uses 2x or less of the raw memory size
as having low memory requirements (green with bolded text),
any configuration that uses less than 5x the raw memory
size as having moderate memory requirements (yellow with
plain text), and all other configurations as having high memory
requirements (red with underlined text). In all cases, the raw
data size can be seen by looking at the memory requirements
for the brute force solution, which makes a copy of the mesh
points or elements. In the tables, memory (abbreviated mem.)
indicates the memory used by the tree, while peak memory
indicates the maximum memory used while creating the tree.

Insight: some libraries temporarily use large amounts of ad-
ditional memory making them a poor choice for significantly
memory constrained environments.

1) Small Scale Mesh Points: Each query of extra-small,
small, medium, and large size retrieves an average of 0.00104%,
0.100%, 1.03% and 8.85% of the process’s assigned mesh
points. Even at this small scale, a few libraries run into errors
and are thus not included in the results. First, although FLANN
and PCL can use GPUs, with 4 NVIDIA Tesla V100 GPUs
with a total of 64 GB RAM, they run into out of memory
errors. In addition, since they are the only two libraries that
support GPUs it is not possible to perform a true cross-library

comparison of this capability. Next, the CGAL range tree
experiences out of memory errors. Finally, none of the ANN
configurations complete within 24 hours. We therefore include
results only for the query sizes that complete in these 24 hours.

Insight: only two of the libraries can utilize GPUs and they
quickly exhaust the GPUs memory.

TABLE III: Small scale results for mesh points. Some libraries do
orders of magnitude better on writing, querying, memory usage'.

Configuration Wr.it('es/sec Queries/sec Mem. Pez:l(
(millions) (MB)

Brute force

3DTK

ALGLIB 1.11 2360 - 69.6]

ANN k-d tree 1.16 A

ANN BD-tree 0.704

Boost 2.87 3660 560| 61.1

CGAL k-d tree | 9690 4060 625| 629 77.2| 111

FLANN 1.98 | 55.5 25.4| 7.64]

KDTREEI 0.388 \7\77\- \

KDTREE2 2.83 | 571 \

KDTREE3 1.65 | 228] 355 6.33 59.6| 127

KDTREE4 563| 65.3| 15.3] 3.55| 115| 115

libkdtree++ 1120| 95.8| 20.2| 4.49 |

libkdtree2 \ \ \

libnabo

libspatialindex ‘

nanoflann ‘

nanoflann

(duplicated data) Glind ey SR

Octree \ \

PCL k-d tree | 256] 40.4 01968 60.5

PCL octree \ 60.5

PicoTree | 2.12[23500/1620| 311| 57.5 105 111

R-tree 12720 | 123] 123

Spatial 0451 | 330] 32.3] 3.6] 108 \

"' The coloring scheme is explained in Section |IV—Bl

The results can be seen in Table [Tl A few things should
be noted about these results. First, as indicated in the table,
the libnabo results are for the tree (heap) with O(logn) query
times rather than the O(n) linear vector heap. Second, we use
KDTREE2’s option to rearrange the data for better performance.
We found this offers substantially better query performance
with only a slight decrease in build throughput. Third, nanoflann
allows you to create an adaptor for an existing vector so that
the storage is not duplicated. We show the results for both no
duplicated data (“nanoflann”) and duplicate data (“nanoflann
duplicated data”). Finally, three libraries, KDTREE?2, libkdtree2,
and Octree, have artificially reduced memory requirements
because they only support storing coordinate data as floats
rather than doubles (and thus offer lower precision).

From the results we can see that the CGAL k-d tree has
by far the highest insertion throughput, followed by Octree
and the PCL octree. However, even one of the slower libraries,
R-tree, builds in approximately 7 seconds so it should be kept
in mind that (apart from 3DTK and libspatialindex) all of
these trees build quite quickly. This highlights the performance
benefits of being able to parallelize construction (and querying)
across the processes through domain decomposition, rather
than attempting to use a single index for the entire mesh
(although this does increase the total memory consumption).
Shockingly, CGAL is able to create the k-d tree significantly
faster than the brute force solution copies the 2D vector of
mesh coordinates. There are a few libraries that perform well
across all query sizes: ALGLIB, Boost, the CGAL k-d tree,
KDTREE2, libkdtree2, Octree, PicoTree and R-tree.

Insight: query performance is strongly dictated by the
number of matching mesh points and when a large number
of points are returned, most libraries fail to beat the brute
force solution.

The poor performance on the large queries is a reflection of
the fact that all of these libraries are tree based and as such
can offer a significant performance advantage when a large
portion of the search space can be pruned and a significant
performance penalty when large portions of the tree must be
traversed. It should also be noted that all of the libraries use far
more memory than the theoretical lower bound of linear storage.
Almost all of the libraries use between 2-5x the space needed
for just the raw coordinate points (29.2 MB), and several use
significantly more than this. Only nanoflann with no duplicated
storage is able to use anywhere close to linear memory, but
it performs more than 10x slower than the best performing
library for all query sizes.

2) Small Scale Mesh Elements: Each query of extra-small,
small, medium, and large size retrieves an average of 0.00213%,
0.212%, 1.68% and 12.7% of the process’s assigned mesh
elements.

TABLE IV: Small scale results for mesh elements. We find
generally good performance, moderate memory overheads and
very good performance compared to brute force!.

Writes/sec Queries/sec

Configuration
8 (millions)

Brute force

CGAL R-tree
libspatialindex
R-tree
Spatial
' The coloring scheme is explained in Section

The results of this evaluation are shown in Table One
library that we test, CGAL’s segment tree, runs into out of

memory errors, and is therefore not included in the results. In
these results we again find that a few of the libraries’ data
structures perform well across the board: Boost, the CGAL R-
tree, and the R-tree library. In this case, the libraries overall use
(relatively) far less memory, with most using less than 2x the
memory needed for the raw element coordinate data (47.0MB).
Unlike with the point results, here all of the best performing
libraries outperform brute force at query sizes (including the
large queries) since the brute force solution experiences an
approximately 2x slowdown as it now has to consider two
points per vector element (the lower and upper corner of the
bounding box) rather than just one.

TABLE V: Large scale results for mesh points for libraries
that perform best at small scale. Significant differences emerge
at large scale'.

Queries/sec

Writes/sec
(millions)

Configuration

Brute force
ALGLIB
Boost

libkdtree2
Octree
PicoTree
R-tree

"' The coloring scheme is explained in Section m

3) Large Scale Mesh Points: Each query of extra-small,
small, medium, and large size retrieves an average of 0.00117%,
0.0996%, 1.05% and 9.84% of the process’s assigned mesh
points. Results are shown in Table [V] Although at small scale
the libraries have good performance for all query sizes, at large
scale we find relatively worse performance for KDTREE2,
libkdtree2 and Octree, and for the CGAL k-d tree on extra-
small queries. The rest still perform well across the board.

Insight: at large scale the libraries outperform the brute force
solution at all query scales. These results can help estimate
when the brute force solution offers the best performance.

4) Large Scale Mesh Elements: The queries of extra-small,
small, medium, and large size retrieve an average of 0.00222%,
0.120%, 1.17% and 10.5% of the mesh elements assigned to
each process. Results are shown in Table [VI} Once again, we
see that CGAL (this time with an R-tree) struggles with the
extra-small queries but has exceptionally fast build throughput,
and Boost performs well across the board. Here Boost is the
only library that achieves good results in terms of memory
requirements since the raw data takes 472 MB. Again, the
R-tree library has significantly slower insertion throughput, but
offers around a 2x speedup for the medium and large queries.

TABLE VI: Large scale results for hexahedral mesh elements
for libraries that perform best at small scale. CGAL offers
the best write performance, R-tree generally offers the best
read performance, and Boost does well across the board!.

Peak

Queries/sec .
Mem.

Writes/sec

Confi; ti
onfiguration (millions)

Brute force

experience significantly worse than logarithmic scaling for
most or all query sizes. Only PicoTree and R-tree experience
good scaling across the board, with ALGLIB experiencing
good scaling at most query sizes. CGAL’s k-d tree experiences
moderate scaling for most query sizes.

TABLE VIII: Strong scaling results for hexahedral mesh
elements. The libraries generally have good scalability apart
from large queries and memory overheads'.

CGAL R-tree

1060

"' The coloring scheme is explained in Section

C. Scalability Evaluations

In this section, we present an evaluation of the strong and
weak scaling for the libraries.

1) Strong Scaling: We evaluate the strong scaling by
comparing the performance as we use 10x fewer processes (16
instead of 160) for the same mesh. Thus, the data per process
increases from small to large (by 8.28x for the point tests and
10.0x for the element tests). The results are shown in Table [VII]
and Table The values shown are the factor difference (the
large result divided by the small result). For the performance
results, we classify the scaling as good (green with bolded

text) if it is better than logarithmic (m = 0.328 for the
points and bg2+m = 0.301 for the elements). We classify

the scaling as moderate (yellow with plain text) if it is worse
than logarithmic but better than half of logarithmic. All other
results are classified as poor (red with underlined text). For the
memory results, we classify the result as good (green) if there
is a sub-linear increase in memory usage, moderate (yellow)
if the increase is greater than linear but less than a 1.5, and
poor (red) if there is a greater than 1.5X increase.

TABLE VII: Strong scaling results for mesh points. Few
libraries have good query scalability'.

. Peak
Configuration | Writes/sec Queries/sec Mem. Mem.
XS| S| M| L (MB) (MB)
Brute force 0.28(0.28|0.28 | 0.28
ALGLIB 0.31
Boost 0.26/0.22|0.25
CGAL Kk-d tree 0.17(0.28|0.23]0.28
KDTREE2
rearranged
libkdtree2 0.240.32
Octree 0.18
PicoTree
R-tree

"' The coloring scheme is explained in Section

a) Mesh Points: As shown in Table [VII apart from
libkdtree2, the libraries scale very well in terms of insertion
throughput and they almost uniformly have a sub-linear increase
in memory usage. However, KDTREE?2, libkdtree2 and Octree

. Peak

Configuration | Writes/sec Queries/sec Menm. Mem.

XS| S| M| L (MB) (MB)

Brute force 0.27(0.27]0.27|0.27| 10.0| 10.0

Boost 026 11.4| 123
CGAL R-tree 0.25

R-tree 0.29| 104| 104

"' The coloring scheme is explained in Section |!V—C1|

b) Mesh Elements: From Table [VII]] we can see that all
libraries achieve good scaling for insertion throughput and just
miss the cutoff for good scaling for the large query size. For
the remaining query sizes, all achieve good scaling apart from
CGAL’s R-tree with the extra-small query size. Interestingly,
they all experience a greater than linear increase in memory
usage (in contrast to their sub-linear scaling for point storage),
and the CGAL R-tree requires almost 20x the memory despite
storing only 10x as many elements.

2) Weak Scaling: To evaluate the weak scaling, we use the
same setup used for the performance evaluations with one
modification: we only perform 1000 extra-small, small, and
medium queries and 100 large queries (1/10th as many queries
of each category). This is sufficient to allow us to compare
differences between the libraries. Where more than the baseline
number of processes (160 and 16) are used, several processes
write and read the same mesh data. This allows us to ensure
that the performance differences are the result of the weak
scaling changes rather than changes in the mesh data. For space
reasons, we only present the results for a representative subset
of the libraries. For each of the four experiment setups, we
present scaling results for one library that performed (more or
less) well across the board and one that performed moderately
well. This demonstrates how a library should be expected to
scale depending on what performance category it falls into.
We consider two different weak scaling scenarios: when the
number of processes per node is held constant and when the
number is varied. The results are shown in Tables [X] and Xl
For both scenarios, we compare the results to the performance
for the baseline setup used in the performance evaluations
(one node, with 160 processes for a small amount of data per
process or 16 processes for a large amount). We classify the
scaling as good (green with bold text) if the performance is
at most 10% worse than the baseline, moderate (yellow with
plain text) if it is (10% — 25%)] worse than the baseline, and
poor (red with underlined text) if the performance is over 25%
worse. In each of the tables, the results indicate the percent
change from the baseline with a negative number indicating

TABLE X: Weak scaling results for a representative subset of the
libraries using a variable number of processes per node. Some libraries
are more sensitive than others to the number of processes per node'.

the operation takes less time than the baseline and a positive
number indicating the operation takes longer than the baseline.

TABLE IX: Weak scaling results for a subset of the libraries using

30 nodes and a fixed number of processes per node. As expected, Configuration |Nodes|Procs| Writes Queries
the libraries all exhibit approximately linear weak scaling’.
CGAL k-d tree] 2| 160| 21.7% | \
. Mesh | . . Queries CGAL k-d tree] 8 160 \ \
Configurat le? Writ
onfiguration | Scale Data rites XS S M L KDTREE 2 160 ‘ ‘
CGAL k-d tree|Small | Points KDTREE? 8| 160 \ \
KDTREE Small | Points Boost® 2| 160 15.4% ‘ 19.6%
Boost Small |Elems Boost® 8| 160 ‘ |
Spatial Small | Elems Spatial® 2| 160 ‘ ‘
ALGLIB Large | Points Spatial® 8| 160 \ \
KDTREE2 |Large Points ALGLIB* 1] 32 \ \
Boost Large Elems ALGLIB* 1] 8o | 22.2%| 16.0%
R-tree Large | Elems KDTREE2* 1 32 ‘ ‘
" The coloring scheme is explained in Section KDTREE2* 1 80 ‘ ‘
2In terms of both mesh data per node and processes per node. Boost® 1 32! 14.7%| 20.3% ‘
5
a) Fixed Number of Processes per Node: When the Boost < 1 6 [B
: R-tree 1 32 \ \
number of processes per node is held constant, we would <
expect to find linear weak scaling (constant performance when R-tree 1 64 |

! An explanation of the coloring scheme can be found in Section
2 Mesh points, small # per process > Mesh elems, small # per process
* Mesh points, large # per process 3> Mesh elems, large # per process

the work per process is held constant) since each process
performs independent work and does not use shared resources

such as the network or file system. To evaluate this, we look
at how the performance changes when using 15 or 30 nodes
(compared to 1 node). The 15 and 30 node results show very
close agreement (within 5%) so we omit the 15 node results
for space reasons. The results are shown in Table

Insight: the libraries achieve approximately linear weak
scaling in all cases. This indicates our results should hold
at any scale if the processes per node and work per process
are held constant.

b) Variable Number of Processes per Node: Next, we
evaluate weak scaling when a different number of processes
per node is used. When a small amount of data per process is
stored, we are already maxing out the processes per node (160).
We therefore evaluate when 20, 40, 60, and 80 processes per
node are used. For space reasons we only present the results
for 20 and 80 processes per node. In this case, we use the
same number of total processes (160) but vary the number of
nodes. For the case when a large amount of data per process
is stored, we only use 16 nodes per process (far below the
maximum), and therefore keep the number of nodes constant
(one) but increase the number of processes per node. For
the mesh point case, we present results for when 32 and 80
processes per node are used. For the mesh elements case we
present results for when 32 and 64 processes per node are used
because with 80 processes we exhaust the node’s memory. The
results, shown in Table [X] are much more varied. The libraries
generally scale well when the number of processes per node is
only 2x different from baseline. However, when the number
of processes per node is 4, 5 or 8x different the results are
sometimes greatly affected. This can be seen when using 64 or

80 processes per node with a large amount of data per process
and with 20 processes per node with a small amount of data
per process. For example, with a small number of points per
process, the CGAL k-d tree (for points) and Boost library
(for elements) both perform dramatically better when only 20
processes per node are used. With a large amount of data per
process, we can see that ALGLIB and Boost both perform
substantially worse when the number of processes per node is
increased. Thus, some of the libraries are much more sensitive
to the number of processes per node that are being utilized.

D. Applicability of Results

Although we only use a single mesh type in this evaluation
(unstructured, hexahedral), we can use these results to estimate
the performance we would get with other mesh types. As
shown in Tables [[T]] through [VI] query performance is greatly
affected by the query size (percent of stored mesh points or
elements that match the query), exhibiting an approximately
linear relationship. Therefore, any mesh with more densely
clustered points or elements near the range being queried should
result in decreased performance. Another factor that should
affect performance is the shape of the mesh elements. All of
the libraries that support mesh elements (2D or 3D shapes) use
axis aligned bounding boxes (AABBs) to determine potential
intersections. Thus, the more a mesh element deviates from
an AABB, the worse the performance because of the increase
in tree branches that must be explored and potential matches
identified, and the need to use more complex intersection tests
to achieve accurate results. Beyond these factors, we would
not expect much of a performance difference. Although many

of the libraries use data structures that are not necessarily
balanced (e.g., octrees or k-d trees), almost all of the indices
are balanced. This is accomplished through a combination of
bulk loading and re-balance functions. Therefore, we would not
expect to find tree-height related performance differences, or
edge cases producing dramatically unbalanced trees. We leave
as future work directly evaluating how the use of different
mesh types affects these results.

Insight: our query results can be used to extrapolate expected
performance for different mesh types.

V. DISCUSSION, INSIGHTS AND FUTURE WORK

In this work, we set out to answer the following questions
regarding the 20 free, open-source C/C++ libraries that support
range queries:

1) Which of the implementations are viable in HPC?

2) How do these libraries compare in terms of build time,

query time, and memory usage at different scales?

3) Is there a single overall best solution?

4) When should a brute force solution be used?

The second question has been thoroughly addressed in
the evaluation section (see Section [[V). In this section we
summarize answers to the remaining questions using the
evaluation results and offer a number of insights that can assist
both HPC application scientists and spatial index developers.
We also present areas for future work.

A. Which of the Implementations Are Viable in an HPC Setting?

As mentioned above, to be viable in an HPC setting, a spatial
indexing library must have fast performance for building the
index and performing queries, good scalability, and moderate
memory usage. In this section, we discuss which libraries best
meet these criteria.

Overall, the results show that for point storage, ALGLIB,
Boost, CGAL’s k-d tree, PicoTree and R-tree achieve the best
query results. KDTREE2, libkdtree2 and Octree perform well
at small scale but achieve worse performance at large scale.
Of these five best performing libraries, R-tree experiences
orders of magnitude worse insertion throughput. Therefore, if
the application will be performing a small number of queries
(meaning index construction is a larger proportion of work), the
R-tree library should not be used, and CGAL’s k-dtree, which
offers almost an order of magnitude improvement over the next
best library, should be strongly considered. In addition, both the
R-tree library and ALGLIB require around 4 X more memory
than is required for the raw data points. Therefore, these
are not viable solutions for particularly memory constrained
environments. However, for point storage the R-tree library
does offer some of the fastest query throughputs. In fact, if
many medium and large queries will be performed at large scale
the R-tree library offers the fastest solution providing nearly
double the query throughput for medium and large queries.

For storing mesh elements, Boost, CGAL’s R-tree and the
R-tree library offer the best performance. CGAL’s R-tree offers

close to a 10x improvement in insertion throughput over Boost
and an 100x improvement over R-tree both at large and small
scales, but generally offers the worst performance of the three
for all query sizes (and particularly poor performance for extra-
small queries). It is therefore a viable solution if a relatively
small number of queries will be performed. Boost has by far
the smallest memory usage (although it has the highest peak
memory usage) and is thus the best solution for moderately
memory constrained environments that can tolerate temporary
memory pressure. Finally, the R-tree library almost always
offers the best query performance, performing around 2x better
than both Boost and CGAL for the medium and large queries
at both small scale and large scale. It is therefore a viable
solution when slightly higher memory usage can be tolerated,
and a large number of queries will be performed.

It is worth emphasizing that all of the best performing
libraries use significantly more memory than the raw data size
and therefore are not suitable for severely memory constrained
environments. If memory is severely constrained, we would
recommend nanoflann with a data adapter (which is simple to
write), which results in sub-linear memory usage, or the Octree
library for point storage and the Boost library for element
storage. For severely space constrained environments, there is
another simple option: store floats rather than doubles. This will
cut memory requirements approximately in half. We expect that
four bytes worth of precision will be sufficient for range queries
in most cases given that the spatial index is not taking the
place of the mesh coordinate storage, but rather is offering an
additional data structure on top (users therefore are not reducing
mesh precision just query precision). It should also be kept
in mind that it is the number of mesh points per process that
determines the total structure size rather than the dataset size.
Most simulations store a large number of variables (anywhere
from 5-100) and a large number of timesteps (anywhere from
100-100,000) and the number of mesh coordinates or elements
will therefore be a relatively small fraction of the overall
dataset. It is also worth emphasizing that, given how quickly
these structures can be created, they can easily be generated
on the fly and therefore will not require any long-term storage.

It is worth noting that the five best performing libraries for
storing points use either a k-d tree (ALGLIB, CGAL’s k-d
tree, PicoTree) or an R-tree (Boost, the R-tree library). For
element storage, all of the best performing libraries use an
R-tree (Boost, CGAL’s R-tree and the R-tree library). Both k-d
trees and R-trees can answer a range query in O(n'~'/¢ 4 k)
time [18] whereas octrees can answer range queries in O(log n)
time [21]. Therefore, it is perhaps a bit surprising that none
of the best performing implementations are octrees. Given the
wide range of performance we see across the libraries for each
tree type, we should expect the library’s implementation to
be a much greater factor in determining performance than the
theoretical bounds of the data structure.

B. Is There a Single Overall Best Solution?

As the evaluation section makes clear, there is no universally
good library that achieves fast build throughput, fast query

throughput for all query sizes and uses close to linear memory.
However, Boost, CGAL and R-tree offer some of the best
performance at large and small scales and have the advantage
of being able to support both points and boxes. Of the three
libraries, Boost offers the best overall performance in terms
of good build and query times (and has the lowest memory
usage), while CGAL offers the best build times and R-tree
offers the best query times. There is therefore no single best
solution, but rather the answer will depend on the problem scale,
memory availability, the number of queries to be performed
and the fraction of stored data that is expected to match the
queries. In addition, as discussed in the next section, there are
circumstances under which the best library to use is no library.

C. When should a brute force solution be used?

The results demonstrate that if many of the queries will
retrieve 10% or more of the stored mesh data, and if there is
a small amount of data per process (e.g., less than 10 million
points or elements), then one should strongly consider using a
brute force solution. The libraries evaluated in this paper offer
the best performance when the search space can be substantially
reduced (pruning branches) and pay a large performance penalty
for the logn tree traversals when a large portion of the tree
must be searched. In addition, as discussed previously, all of
the libraries require significantly more memory than the raw
data requires, and therefore the brute force solution should be
used if users are severely memory constrained.

D. Future Work

We leave as future work evaluating these libraries for
dynamic use (e.g., if adaptive mesh refinement is used) and for
mesh elements that are more complex shapes. We also plan
to assess the portability and software design choices of the
libraries, and to evaluate how the use of different architectures
affects the evaluation results. Finally, we plan to evaluate
libraries for languages other than C and C++.

ACKNOWLEDGEMENTS

This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

This work was supported by the U.S. Department of Energy
Office of Science, under the SSIO grant series and the Data
Management grant series, Decaf project, program manager
Lucy Nowell.

Margaret Lawson acknowledges support from the United
States Department of Energy through the Computational Sci-
ences Graduate Fellowship (DOE CSGF) under grant number:
DE-SC0020347.

This work was supported in part by the State of Illinois.

REFERENCES

[1] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu, “Six degrees of scientific data: reading patterns
for extreme scale science 10,” in Proceedings of the 20th international
symposium on High performance distributed computing, ser. HPDC

’11. New York, NY, USA: ACM, 2011, pp. 49-60. [Online]. Available:

http://doi.acm.org/10.1145/1996130.1996139

S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu, D. R. O’Hallaron,

and G. Heber, “Efficient query processing on unstructured tetrahedral

meshes,” in Proceedings of the 2006 ACM SIGMOD international
conference on Management of data. New York, NY, USA: ACM,

2006, pp. 551-562.

[3] H. Hinterberger, K. A. Meier, and H. Gilgen, “Spatial data realloca-
tion based on multidimensional range queries. a contribution to data
management for the earth sciences,” in Seventh International Working
Conference on Scientific and Statistical Database Management. New
York, NY, USA: IEEE, 1994, pp. 228-239.

[4] H. Lu, S. K. Seal, W. Guo, and J. Poplawsky, “Spherical region queries
on multicore architectures,” in Proceedings of the Seventh Workshop on
Irregular Applications: Architectures and Algorithms. New York, NY,
USA: ACM, 2017, pp. 1-4.

[5] S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu, D. R. O’Hallaron,

and G. Heber, “Efficient query processing on unstructured tetrahedral

meshes,” in Proceedings of the 2006 ACM SIGMOD international
conference on Management of data. New York, NY, USA: ACM,

2006, pp. 551-562.

J. Beyer, A. Al-Awami, N. Kasthuri, J. W. Lichtman, H. Pfister, and

M. Hadwiger, “Connectomeexplorer: Query-guided visual analysis of

large volumetric neuroscience data,” IEEE transactions on visualization

and computer graphics, vol. 19, no. 12, pp. 2868-2877, 2013.

[71 M. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz, “Datacutter:
Middleware for filtering very large scientific datasets on archival storage

[2

—

[6

=

systems,” in IEEE Symposium on Mass Storage Systems. New York,
NY, USA: IEEE, 2000, pp. 119-134.
[81 M. F. Barone, J. Ray, and S. Domino, “Feature selection,

clustering, and prototype placement for turbulence data sets,”
in AIAA Scitech 2021 Forum. Reston, VA: American Institute
of Aeronautics and Astronautic, 2021. [Online]. Available: https:
/larc.aiaa.org/doi/abs/10.2514/6.2021-1750

L. Gosink, J. Anderson, W. Bethel, and K. Joy, “Variable interactions
in query-driven visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1400-1407, 2007.

M. Betoule, J. Marriner, N. Regnault, J.-C. Cuillandre, P. Astier, J. Guy,
C. Balland, P. El Hage, D. Hardin, R. Kessler et al., “Improved
photometric calibration of the snls and the sdss supernova surveys,”
Astronomy & Astrophysics, vol. 552, p. A124, 2013.

A. Aji, F. Wang, and J. H. Saltz, “Towards building a high performance
spatial query system for large scale medical imaging data,” in Proceed-
ings of the 20th international conference on advances in geographic
information systems. New York, NY, USA: ACM, 2012, pp. 309-318.
H.-T. Chiu, J. Chou, V. Vishwanath, and K. Wu, “In-memory query system
for scientific datasets,” in 2015 IEEE 21st International Conference on
Parallel and Distributed Systems (ICPADS). New York, NY, USA:
IEEE, 2015, pp. 362-371.

M. Rasquin, C. Smith, K. Chitale, S. Seol, B. Matthews, J. Martin,
O. Sahni, R. Loy, M. S. Shephard, and K. E. Jansen, “Scalable fully
implicit finite element flow solver with application to high-fidelity flow
control simulations on a realistic wing design,” Computing in Science
and Engineering, vol. 16, no. 6, pp. 13-21, 2014.

Z. Zhao, Y. Zhang, L. He, X. Chang, and L. Zhang, “A large-scale
parallel hybrid grid generation technique for realistic complex geometry,
International Journal for Numerical Methods in Fluids, vol. 92, no. 10,
pp. 1235-1255, 2020.

C. Godenschwager, F. Schornbaum, M. Bauer, H. Kostler, and U. Riide,
“A framework for hybrid parallel flow simulations with a trillion cells in
complex geometries,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, 2013,
pp. 1-12.

U. D. of Energy.

[9

—

[10]

(11]

[12]

[13]

[14]

>

[15]

[16] (2019) U.s. department of energy and
intel to build first exascale supercomputer. U.S. Department
of Energy. [Online]. Available: https://www.energy.gov/articles/

us-department-energy-and-intel- build- first-exascale- supercomputer

http://doi.acm.org/10.1145/1996130.1996139
https://arc.aiaa.org/doi/abs/10.2514/6.2021-1750
https://arc.aiaa.org/doi/abs/10.2514/6.2021-1750
https://www.energy.gov/articles/us-department-energy-and-intel-build-first-exascale-supercomputer
https://www.energy.gov/articles/us-department-energy-and-intel-build-first-exascale-supercomputer

[17]
[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[36]

(371

[38]

[39]
[40]
[41]

[42]

J. Matousek, “Geometric range searching,” ACM Computing Surveys
(CSUR), vol. 26, no. 4, pp. 422461, 1994.

P. K. Agarwal, “Range searching,” DUKE UNIV DURHAM NC DEPT
OF COMPUTER SCIENCE, Tech. Rep., 1996.

D. E. Willard, “New data structures for orthogonal range queries,” SIAM
Journal on Computing, vol. 14, no. 1, pp. 232-253, 1985.

B. Chazelle, “Lower bounds for orthogonal range searching: I. the
reporting case,” Journal of the ACM (JACM), vol. 37, no. 2, pp. 200-212,
1990.

C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in representing
three-dimensional objects,” Computer Graphics and Image Processing,
vol. 14, no. 3, pp. 249-270, 1980.

L. Formaggia, “Data structures for unstructured mesh generation,” 1999.
J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,
1975.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47-57.

S. T. Leutenegger, M. A. Lopez, and J. Edgington, “Str: A simple and
efficient algorithm for r-tree packing,” in Proceedings 13th International
Conference on Data Engineering. New York, NY, USA: IEEE, 1997,
pp- 497-506.

Y. J. Garcia R, M. A. Lépez, and S. T. Leutenegger, “A greedy algorithm
for bulk loading r-trees,” in Proceedings of the 6th ACM international
symposium on Advances in geographic information systems, 1998, pp.
163-164.

J. Elseberg, S. Magnenat, R. Siegwart, and A. Niichter, “Comparison
of nearest-neighbor-search strategies and implementations for efficient
shape registration,” Journal of Software Engineering for Robotics, vol. 3,
no. 1, pp. 2-12, 2012.

V. Amaral, B. Norberto, M. Goulao, M. Aldinucci, S. Benkner, A. Brac-
ciali, P. Carreira, E. Celms, L. Correia, C. Grelck et al., “Programming
languages for data-intensive hpc applications: A systematic mapping
study,” Parallel Computing, vol. 91, p. 102584, 2020.

I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and
N. Sultana, “A large-scale study of mpi usage in open-source hpc
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. New York,
NY, USA: ACM, 2019, pp. 1-14.

K. Mehlhorn and S. Niher, LEDA: A platform for combinatorial and
geometric computing. Cambridge university press, 1999.

A. Niichter and K. Lingemann. (2011) 3dtk—the 3d toolkit. [Online].
Available: http://slam6d.sourceforge.net

S. Bochkanov and V. Bystritsky, “Alglib-a cross-platform numerical
analysis and data processing library,” ALGLIB Project. Novgorod, Russia,
2011.

S. Arya and D. Mount, “Ann: library for approximate nearest neighbor
searching,” in Proceedings of IEEE CGC Workshop on Computational
Geometry, Providence, RI, 1998.

B. Gehrels, B. Lalande, M. Loskot, A. Wulkiewicz, M. Karavelas, and
V. Fisikopoulos. (2020) Geometry. Boost. [Online]. Available: https:
/Iwww.boost.org/doc/libs/1_75_0/libs/geometry/doc/html/index.html!

A. Fabri and S. Pion, “Cgal: The computational geometry algorithms
library,” in Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ser. GIS *09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
538-539. [Online]. Available: https://doi.org/10.1145/1653771.1653865
M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p- 2, 2009.

J. F. Carvalho. (2020) Kdtree. [Online]. Available: https://github.com/
crvs/KDTree

M. B. Kennel, “Kdtree 2: Fortran 95 and c++ software to efficiently
search for near neighbors in a multi-dimensional euclidean space,”
arXiv:physics/0408067, 2004.

Anon. (2020) Kdtree. [Online]. Available: https://github.com/G3tupup/
KdTree

J. Tsiombikas. (2019) kdtree. [Online]. Available: https://github.com/
jtsiomb/kdtree

M. E. Krafft. (2020) libkdtree. [Online]. Available: https://github.com/
nvmd/libkdtree

J. Dietrich. (2013) libkdtree. [Online]. Available: https://github.com/
joergdietrich/libkdtree

[43]
[44]

[45]

[46]

[47]
[48]
[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

M. Hadjieleftheriou, “Libspatialindex,” 2015.

J. L. Blanco and P. K. Rai. (2014) nanoflann: a c++ header-only fork
of flann, a library for nearest neighbor (nn) wih kd-trees. [Online].
Available: https://github.com/jlblancoc/nanoflann

J. Behley, V. Steinhage, and A. B. Cremers, “Efficient radius neighbor
seach in three-dimensional point clouds,” in Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2015.

R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
2011 IEEE international conference on robotics and automation. New
York, NY, USA: IEEE, 2011, pp. 1-4.

J. Broere. (2021) Picotree. [Online]. Available: https://github.com/Jaybro/
pico_tree

M. Green and G. Douglas. (2004) R-trees. [Online]. Available:
https://superliminal.com/sources/#C_Code

S. Bougerel. (2017) Spatial c++ library.
http://spatial.sourceforge.net/index.html

M. Lawson. (2021) Benchmarking suite for range tree libraries.
[Online]. Available: https://github.com/mlawsonca/benchmarking_suite_|
range_searching_libraries

S. P. Domino, P. Sakievich, and M. Barone, “An assessment
of atypical mesh topologies for low-mach large-eddy simulation,”
Computers & Fluids, vol. 179, pp. 655-669, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045793018305942
H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp, “Modeling the performance of an algebraic multigrid cycle
on hpc platforms,” in Proceedings of the international conference on
Supercomputing. New York, NY, USA: ACM, 2011, pp. 172-181.
M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing
of wind turbine aerodynamics using isogeometric analysis,” Computers
& Fluids, vol. 49, no. 1, pp. 93-100, 2011.

A. Quintanas-Corominas, P. Maimi, E. Casoni, A. Turon, J. A. Mayugo,
G. Guillamet, and M. Védzquez, “A 3d transversally isotropic constitutive
model for advanced composites implemented in a high performance
computing code,” European Journal of Mechanics-A/Solids, vol. 71, pp.
278-291, 2018.

E. Gabriel, S. Feki, K. Benkert, and M. M. Resch, “Towards performance
portability through runtime adaptation for high-performance computing
applications,” Concurrency and Computation: Practice and Experience,
vol. 22, no. 16, pp. 2230-2246, 2010.

T. Marrinan, G. Eisenhauer, M. Wolf, J. A. Insley, S. Rizzi, and M. E.
Papka, “Parallel streaming between heterogeneous hpc resources for real-
time analysis,” Journal of Computational Science, vol. 31, pp. 163-171,
2019.

C. Peiia-Monferrer, R. Manson-Sawko, and V. Elisseev, “Hpc-cloud
native framework for concurrent simulation, analysis and visualization
of cfd workflows,” Future Generation Computer Systems, vol. 123, pp.
14-23, 2021.

J. Cummings, A. Pankin, N. Podhosrzki, G. Park, S. Ku, R. Barreto,
S. Klasky, C. Chang, H. Strauss, L. Sugiyama et al., “Plasma edge kinetic-
mhd modeling in tokamaks using kepler workflow for code coupling,
data management and visualization,” Communications in Computational
Physics, vol. 4, no. 3, pp. 675-702, 2008.

N. A. Simakov, J. P. White, R. L. DeLeon, S. M. Gallo, M. D. Jones, J. T.
Palmer, B. Plessinger, and T. R. Furlani, “A workload analysis of nsf’s
innovative hpc resources using xdmod,” arXiv preprint arXiv:1801.04306,
2018.

M. A. Salim, T. D. Uram, J. T. Childers, P. Balaprakash, V. Vishwanath,
and M. E. Papka, “Balsam: Automated scheduling and execution of dy-
namic, data-intensive hpc workflows,” arXiv preprint arXiv:1909.08704,
2019.

(2020) Massif: a heap profiler. [Online]. Available: https://www.valgrind!
org/docs/manual/ms-manual.html

N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89-100, 2007.

[Online]. Available:

http://slam6d.sourceforge.net
https://www.boost.org/doc/libs/1_75_0/libs/geometry/doc/html/index.html
https://www.boost.org/doc/libs/1_75_0/libs/geometry/doc/html/index.html
https://doi.org/10.1145/1653771.1653865
https://github.com/crvs/KDTree
https://github.com/crvs/KDTree
https://github.com/G3tupup/KdTree
https://github.com/G3tupup/KdTree
https://github.com/jtsiomb/kdtree
https://github.com/jtsiomb/kdtree
https://github.com/nvmd/libkdtree
https://github.com/nvmd/libkdtree
https://github.com/joergdietrich/libkdtree
https://github.com/joergdietrich/libkdtree
https://github.com/jlblancoc/nanoflann
https://github.com/Jaybro/pico_tree
https://github.com/Jaybro/pico_tree
https://superliminal.com/sources/#C_Code
http://spatial.sourceforge.net/index.html
https://github.com/mlawsonca/benchmarking_suite_range_searching_libraries
https://github.com/mlawsonca/benchmarking_suite_range_searching_libraries
https://www.sciencedirect.com/science/article/pii/S0045793018305942
https://www.valgrind.org/docs/manual/ms-manual.html
https://www.valgrind.org/docs/manual/ms-manual.html

	Introduction
	Related Work
	Theory: Geometric Range Searching and Search Structures
	Octrees
	K-d trees
	R-trees

	Comparisons of Libraries Supporting Range Queries

	Spatial Indexing Libraries Overview
	Evaluation and Results
	Experimental Setup
	Performance Evaluations
	Small Scale Mesh Points
	Small Scale Mesh Elements
	Large Scale Mesh Points
	Large Scale Mesh Elements

	Scalability Evaluations
	Strong Scaling
	Mesh Points
	Mesh Elements

	Weak Scaling
	Fixed Number of Processes per Node
	Variable Number of Processes per Node

	Applicability of Results

	Discussion, Insights and Future Work
	Which of the Implementations Are Viable in an HPC Setting?
	Is There a Single Overall Best Solution?
	When should a brute force solution be used?
	Future Work

	References

