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Problem Motivation: Balancing Grid Security with Economic Dispatch

® Uti||t|es Spe nt 316_6 b||||on on Systems Operations g“igﬂazloi%eggiggon the electric transmission system by major U.S. utilities (2000-2019)
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* FERC predicts effective optimization could save
tens of billions annually [2]

$30 new
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* Grids operated close to their optimal points pose 815
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Power Flow Model Description

e Optimal Power Flow (OPF) programs balance
load demands with generator setpoints in the
most economic way [4]:

 AC-OPF: non-linear, non-convex

 Convex relaxations of AC-OPF
e DC-OPF: linearized version

Source: |IEEE PG-Lib OPF Case 14

e Global [5] vs local methods

: . . Min C(p9 1
* Security constrained OPF used to optimize to n Cp?) W
1 1 . Zk(n,m) pl{(n,m) + Zk(n,m) pli(n,m) - Pﬁ +pf = (2)
more secure operating points [6]:

° N 1 secu I’It H Y H H Zk(n,m) qu:(n,m) +Zk(n,m) qltc(n,m) - q,‘f + qrc% =0 (3)

: y signifies an operating point that can .
handle any single outage in the system yrt S v s ymer (4)
 Extremely computationally expensive, exponentially Onm" = O = O < O™ (5)
increases variable space pmin < p < pax (6)
A< Qp < QR (7)

[4] Molzahn et al 2019 Foundations and Trends in Electric Energy Systems
[5] Liu et al 2018 IEEE Transactions on Power Systems 3
[6] Capitanescu et al 2011 Electric Power Systems Research
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Big Picture: Using ML Surrogates to Embed Intractable Constraints
into Nonlinear Programs (NLP)

 Embedding deep NN into large scale NLP

problems
_ . Offline
* NN embed complex security function / Security Sampling 5
. . . . @ K
* Tractable solution time for online economic O | i e SN
i @ Classifier : VX " F
dispatch S 7
e Can be used to boost security in large-scale grid ' .
problems Online
/ .
* Integration with familiar optimization (Pyomo) Load Profi — R
and power flow (Egret) software o e e SACTE SO
5
Schematic of SC-OPF Model Solution
Ge'orregc;ﬁ | Visual Repres(é’?léi)tionzof Feasible Spa;;?:rSma/I Grid (Source: Hiskens et al 2001 4

IEEE Transactions on Power Systems)



Literature Review

Hybrid models have been used in PSE for many applications:

* Parallel mechanistic and parametric models for improving predictions in activated sludge
process [14]

e Series NN and kinetic model for lignocellulosic fermentation [15]

Black-box feasibility functions for Kriging, NN models [16-17]

 Pharmaceutical, process models (low dimensionality)

* Linear regression models trained to map security boundary for given load
profile[18]
* Smaller case studies, not generalizable
RelLU network as security constraint for MINLP and MILP approximation [19]
* Integer variables, power flow equation approximation, IEEE Case 14

Fit NN to full optimization solution instead of secure space [20]
* Not flexible to changes in costing function, network parameters

[14] Lee et al 2002 Biotechnology and bioengineering [18] Martinez et al 2010 IEEE Transactions on Power Systems
- [15] Lopez et al 2020 Biofuels, Bioproducts and Biorefining [19] Venzke et al 2020 Under Review
Georgia [16] Wang et al 2017 AIChE Journal [20] Velloso et al 2020 Archive
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Methodology: Formulating a NN into NLP (Full Space)

k=0 E k+1 K
T {Wk,bk,a} {Wk+l7bl€+1’o.} Y

* Inputs x, fully connected sequential layers,
outputs y

* Direct encoding of NN model into
intermediate variables z

* Here activation functions are explicitly
encoded into variables/constraints in

W
. . o ’ ~k—+1 k—+1
optimization model Inputs NI “Nin' Outputs
Hidden Layers
Full Space Representation of NN Model
0 _ ) k-1 > > — k
Zn = Xn Zn f(W b, Zn ) Zn - U(Zn) > Yn = f(W» b,Zn)
Georgia 6
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Methodology: Formulating a NN into NLP (Reduced Space)

* Inputs x map directly to outputs y with a

. . {Wk’bk’o'}
single constraint
i Ry Ok ok gkl
* Internals of NN not treated as variables
. . . Inputs Outputs
* Has shown to produce superior relaxations in ; Hidden Lavers uy

global optimization [ref] O_,_,@_,@_,_,O

e Reduces overall model size 0 e Lol K41

* Internal variables less important after training

k+1
....... @ Wi ;
......... ; >
Reduced Space Formulation
S D &
s.t. y=NN(x) .
glx,y)<0 i3 . @»e}j{-}
xX€EX, yeEY 31

Reduced Space Representation of NN Model
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Methodology: Formulating ReLU NNs (MILP, Complementarity)

* ReLU NNs are increasingly
common in ML literature [ref]

* Can be represented as MILP

* Not advantageous for hybrid SC-
OPF as underlying physics still
non-linear (MINLP)

* Complementarity formulation
relaxes model to eliminate integer
variables

Georgia
Tech

RelLU is piecewise linear:
z = max(z,0)

MILP can give bounds:
0<(zk—-28)1zF

Complimentarity:
(Z,’§ —Z“,’i)z,’{ =¢ VneN,VkeK
e=>0



OptML: Bridging Pyomo Optimization Tools and ML Libraries

import pyomo.environ as pyo
from tensorflow import keras

from optml import OptMLBlock

from optml.neuralnet import FullSpaceContinuousFormulation, ReducedSpaceContinuousFormulation
from optml.neuralnet import ReLUBigMFormulation

from optml.neuralnet import load_keras_sequential

neural_net = keras.models.load_model('Saved NN Model')

net=load_keras_sequential(neural_net)

formulation = ReducedSpaceContinuousFormulation(net)

m=pyo.ConcreteModel()

m.nn = OptMLBlock()

m.nn.y=pyo.Var(m.nn.outputindex)
m.nn.build_formulation(formulation, input_vars=[inputs], output_vars=m.nn.y)

* Simple way to load tensorflow based NNs into pyomo
* Tools for reduced space, full space, MILP, complimentarity

e Block structure to add combine with existing pyomo models
https://github.com/or-fusion/OptML/tree/main

Georgia
Tech



Methodology: Model Guided Sampling

Sampling Algorithm for Boundary Points

Initial Loads=[LFmin .. LFmax] Load Directions=[LD°,... ,LD]

for IL in Initial Loads:
for LD in Load Dirs}

max(SF)

s.t. go(xo,up) =0
Ic (xc:uc) =0
X < Xg < xy,ur <UuUyg < uy
X < X, < xp,ur <u.<uy
p; =IL * LD * SF

PL_ = power Factor

’pf+qf

* Algorithm can be parallelized (single
contingencies independent)

* Point where security constraint becomes
active is much more informative to NN
classifier

Georgia [21] Venzke et al 2021 Electric Power Systems Research

Tech

Existing sampling approaches include use of
hyperspheres [21]

LHS sampling of initial load conditions and
ramping vectors

Optimization formulation to find max scaling
factor before security constraint is violated

Critical Load
Boundary

Secure T Ud

Point ..® Insecure
. ‘‘‘‘‘ Point

PO 8 Bo@indary
Initial Point Points
Sampling Strategy Visualization 10



Classifier Accuracy Results

* ROC explains trade-off between
conservativeness and accuracy (can be
tuned in optimization problem:
softmax output)

e Sequential Model: 118 inputs, 2
hidden layers, 20 nodes

* 89% accuracy for test points on IEEE
Case 118

* ReLU and tanh networks are able to
achieve identical accuracy

Georgia
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Methodology: NN SC-OPF Reformulation

* Incorporating security constraints makes Extensive Formulation
prObIem VEery Iarge xo,uo,xﬁgz f(uo) + cheC fc(uc» uO)
e |EEE Case 30: 450 -> 18,400 variables go(xo, Ug) =0
gc(x,Hu.) =0 VcecCl
* Classification of security in original variable X, < Xo < xy,up < U < Uy
space Xp S x. <xp,up, Su.<uy VceC

Secure space is encoded much more efficiently

Hybrid Reformulation

Expensive simulations can be done offline so

. . . min

that online solution is fast v f (W)
gx,u)=20
X < x<xy,u, <u<uy
Ysec = NN(X; u)

Vsec = @

Georgia
Te%h 12



Extensive vs Hybrid Comparison {Case 118}

Obj-> Average: 0.85% optimality gap or
relative error between objective function
e Nearly identical obj fxn values for most cases

CPU: 5.27 sec for extensive
CPU: 0.32 sec for hybrid model (tanh)
CPU: 0.35 sec for ReLU-complementarity

Model mismatch-> 0.615% average error in
real power variables

Georgia
Tech
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Conclusions

* Modern grid systems require intensive optimization

Enforcing grid security can be mathematically challenging

Neural Network classifiers can be formulated naturally within NLP OPF problems

High accuracy conferred through feasibility sampling

Balance of computation and accuracy

Georgia
Te%h 14



Future Work and Anticipated Challenges

* Larger case studies than Case 118
* Parallelization of sampling algorithm
* Input feature selection for NN classifier
* Selection of most prescient contingency events

under-fitting over-fitting

. Test risk

Risk

~ o Training risk

* NN sparsification, parameterization [23]: s e
* Larger NN classifiers will be harder to optimize Capacity of H

* Sparsification can greatly speed up NLP solution

* Lottery ticket hypothesis (90% reduction possible with 4 under-parameterized /\ over-parameterized
same accuracy) y Test risk
7] “classical” “modern”
. regime interpolating regime
e Further OptML tools: = :
¢ NeW ML mOdeIS h ‘"‘T-'I-:aining riSk)E‘/interpolation threshold
e : : == _ -
NN verification case studies Capacity of H
Non—intuitive generalization of over-parameterized
deep ML models (Source: Reconciling Modern Machine
Learning Practice and the bias-variance trade-off)

Georgia [23] Frankle et al 2018 Archived
Tech |/ o
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Thank you!

Questions?
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AC Power Flow Equations

Zk(n,m)exgut p£(n,m) ) k(n,m)eKin Pﬁ(n,m) - Pﬁ +p¢ =0, VneN
Lk (nm)eKQut Ty + Y eumyexin Qknm) ~ @ + 45 =0, YneN
p}{(n,m) = gkVi — anm(gkCOSHn,m + kaian,m), Vk e K

Prenm) = JkVim — VU (gr €086y 1 — bysinby, ), Vk € K

Q;C(n,m) = —(by + bi™Mv? — v,V (grsiny ,m — brcosOy ), Vk € K
q}i(n,m)= —(bk + bfgh)v,% + vnvm(gksinen,m + bkcosﬁn,m), Vk e K
piin < g < pMax ype N

oM < 0, — O, < O, V{n,m} e K

pin < p. < pX, Yne N

gt < q, < @, VneN
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AC Optimal Power Flow Formulation

Min C(p9)
S.t. Zk(n,m)EK,‘{“t p,{(n,m) + Zk(n,m)EK,%n pﬁ(n,m) — pﬁ + pﬁ =0, VneN
Zk(n,m)eKﬁut qucc(n,m) + Zk(n,m)eK,i{l q;é(n,m) - qg + q,‘{ =0, VneN
P;C(n,m) = gV — vnvm(gkcosﬁn,m + bksinen,m), Vk e K
P;ﬁ(n,m) = gxV3 — vnvm(gkcosen,m — bksinen,m), Vk e K
qlf(n,m) = —(by + bi™MvE — v v (g SinGy m — brcosOpm), Yk € K
qitc(n,m)= —(bk + b,ih)vﬁ, + vnvm(gksinen’m + bkcosen,m), Vk e K
vt < v, < v, VneN
pmin < g, — @, < 619X vin,m}eK
ptt < p, < P, Vne N
¢ < g, < @, YneN
(p,{ -+ q,]:)2 < (Thermal Limit)?, Vke K
(pt + qL)? < (Thermal Limit)?, Vk e K
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Security Constrained AC Optimal Power Flow

Min C(p9)
f t 9 d —
s.t. z:k(n,m)el{,olut Pkm,m) + z:k(n,m)el{,i{“‘ Pk(n,m) ~ Pn tpn =0, VneN,Vcel

f _
z:ilc(n,m)eK;;uf Aienm) T Zk(n,m)ex,gn q;é(n,m) —qs +qi =0, VneN,VceC

P;C(n,m) = grVh — vnvm(gkcosen,m + bksiné?n,m), Vke K,VceC

Pi(n,m) = gyvs — vnvm(gkcosen,m — bksinen’m), Vke K,VceC

Q;{(n,m) = —(bk + b,ih)v,% — vnvm(gksiné?n,m - bkcosen,m), Vke K,VceC
q,i(n’m)= — (b + bM)v2 + vpvm (grsindp m + brcosby ), Yk e K,¥Yce C
v < . < M yYne NVeeC

gmin < 9. —0,., <6 vinmleKNVceC

pIit < p, < pM*, YneN, VceC

g < q, < @19, YneN, YceC

(p,f - q,{:)2 < (Thermal Limit)?, VkeK, VceC

(pL + qL)? < (Thermal Limit)?, Vke K, VceC
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Two Successful Modeling Paradigms Used for Engineering
Applications

o I
Principles

* Kinetic models . .
« Conservation Balances Thermo Eq. of * Process * Heuristic NN _
» Navier-Stokes Stat a Models empirical * Gaussian
ate * Unit Ops models Process

* Maxwell’s Equations AC Power Flow

Machine
Learning

* First-principle (FP) models are difficult to develop, expensive to solve, but

generalize well and are interpretable [1]

* Machine learning (ML) models are easy to develop, fast to solve, but generalize

poorly and are not easily interpreted

* Creating models with both elements allows us to solve new problems, improve

speed and accuracy of engineering model predictions [2]

Georgia [1] Grossman et al. 2000 AIChE Journal
Tech _ [2] Venkatasubramanian 2019 AiChE Journal
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NN SC-OPF Comparison Results

* Literature study for extensive form SC-ACOPF takes ~400 sec [22]

* NN-SC-ACOPF averages 7 sec and never exceeds 15 sec

m Avg Opt Gap CPU (s) % N-1 Insecure

SCOPF Extensive
NN SCOPF

Georgia [22] Kang 2015 PhD Thesis Texas A&M University
Tech
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