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Problem Motivation: Balancing Grid Security with Economic Dispatch

• Utilities spent $16.6 billion on systems operations 
and maintenance in 2019 [1]

• FERC predicts effective optimization could save 
tens of billions annually [2]

• Grids operated close to their optimal points pose 
risk of large-scale outage in case of contingency 
[3]

• Important to weigh optimality and security
• Contingency events may take a long time to 

rectify
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Source: US Energy Information Administration

[1] US Energy Information Administration
[2] Cain et al 2012 FERC
[3] Capitanescu et al 2011 Electric Power Systems Research

Source: Enhancing the Resilience of the Nations Electricity System (2017)



Power Flow Model Description

• Optimal Power Flow (OPF) programs balance 
load demands with generator setpoints in the 
most economic way [4]:
• AC-OPF: non-linear, non-convex
• Convex relaxations of AC-OPF
• DC-OPF: linearized version
• Global [5] vs local methods

• Security constrained OPF used to optimize to 
more secure operating points [6]:
• N-1 security signifies an operating point that can 

handle any single outage in the system
• Extremely computationally expensive, exponentially 

increases variable space
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[4] Molzahn et al 2019 Foundations and Trends in Electric Energy Systems
[5] Liu et al 2018 IEEE Transactions on Power Systems
[6] Capitanescu et al 2011 Electric Power Systems Research



Big Picture: Using ML Surrogates to Embed Intractable Constraints 
into Nonlinear Programs (NLP)
• Embedding deep NN into large scale NLP 

problems
• NN embed complex security function
• Tractable solution time for online economic 

dispatch
• Can be used to boost security in large-scale grid 

problems
• Integration with familiar optimization (Pyomo) 

and power flow (Egret) software
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Schematic of SC-OPF Model Solution

Visual Representation of Feasible Space for Small Grid (Source: Hiskens et al 2001 
IEEE Transactions on Power Systems)



Literature Review

• Hybrid models have been used in PSE for many applications:
• Parallel mechanistic and parametric models for improving predictions in activated sludge 

process [14]
• Series NN and kinetic model for lignocellulosic fermentation [15]

• Black-box feasibility functions for Kriging, NN models [16-17] 
• Pharmaceutical, process models (low dimensionality)

• Linear regression models trained to map security boundary for given load 
profile[18] 
• Smaller case studies, not generalizable

• ReLU network as security constraint for MINLP and MILP approximation [19]
• Integer variables, power flow equation approximation, IEEE Case 14

• Fit NN to full optimization solution instead of secure space [20]
• Not flexible to changes in costing function, network parameters
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[14] Lee et al 2002 Biotechnology and bioengineering
[15] Lopez et al 2020 Biofuels, Bioproducts and Biorefining
[16] Wang et al 2017 AIChE Journal
[17] Boukouvala et al 2012 Comp. & ChE

[18] Martinez et al 2010 IEEE Transactions on Power Systems
[19] Venzke et al 2020 Under Review
[20] Velloso et al 2020 Archive



Methodology: Formulating a NN into NLP (Full Space)

Inputs Outputs

Hidden Layers
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• Inputs x, fully connected sequential layers, 
outputs y 
• Direct encoding of NN model into 

intermediate variables z
• Here activation functions are explicitly 

encoded into variables/constraints in 
optimization model

Full Space Representation of NN Model

𝑧!" = 𝑥! 𝑧̂!# = 𝑓(𝑊, 𝑏, 𝑧!#$%) 𝑧!# = 𝜎(𝑧̂!#) 𝑦! = 𝑓(𝑊, 𝑏, 𝑧!#)



Methodology: Formulating a NN into NLP (Reduced Space)

Inputs Outputs

Hidden Layers
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• Inputs x map directly to outputs y with a 
single constraint
• Internals of NN not treated as variables 
• Has shown to produce superior relaxations in 

global optimization [ref]
• Reduces overall model size
• Internal variables less important after training

Reduced Space Representation of NN Model

&,(
)*! 𝑓(𝑥, 𝑦)
s.t. y = 𝑁𝑁 𝑥

𝑔(𝑥, 𝑦) ≤ 0
𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

Reduced Space Formulation



Methodology: Formulating ReLU NNs (MILP, Complementarity)

• ReLU NNs are increasingly 
common in ML literature [ref]
• Can be represented as MILP
• Not advantageous for hybrid SC-

OPF as underlying physics still 
non-linear (MINLP)
• Complementarity formulation

relaxes model to eliminate integer 
variables
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ReLU is piecewise linear:
𝑧 = max(𝑧̂, 0)

MILP can give bounds:
0 ≤ (𝑧56 − 𝑧̂56) ⊥ 𝑧56

Complimentarity:
𝑧56 − 𝑧̂56 𝑧56 = 𝜀 ∀𝑛 ∈ 𝑁, ∀𝑘 ∈ 𝐾

𝜀 ≥ 0



OptML: Bridging Pyomo Optimization Tools and ML Libraries 

• Simple way to load tensorflow based NNs into pyomo

• Tools for reduced space, full space, MILP, complimentarity

• Block structure to add combine with existing pyomo models
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https://github.com/or-fusion/OptML/tree/main



Methodology: Model Guided Sampling

• Existing sampling approaches include use of 
hyperspheres [21]

• LHS sampling of initial load conditions and 
ramping vectors

• Optimization formulation to find max scaling 
factor before security constraint is violated
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[21] Venzke et al 2021 Electric Power Systems Research

Initial Point

Secure 
Point

Boundary 
Points

Insecure 
Point

Critical Load 
Boundary

Sampling Strategy Visualization

• Algorithm can be parallelized (single 
contingencies independent)

• Point where security constraint becomes 
active is much more informative to NN 
classifier



Classifier Accuracy Results

• ROC explains trade-off between 
conservativeness and accuracy (can be 
tuned in optimization problem: 
softmax output)
• Sequential Model: 118 inputs, 2 

hidden layers, 20 nodes 
• 89% accuracy for test points on IEEE 

Case 118
• ReLU and tanh networks are able to

achieve identical accuracy
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Receiver Operating Curve (ROC) for IEEE Case 118 Security Classifier



Methodology: NN SC-OPF Reformulation

• Incorporating security constraints makes 
problem very large 
• IEEE Case 30: 450 -> 18,400 variables
• Classification of security in original variable 

space
• Secure space is encoded much more efficiently
• Expensive simulations can be done offline so 

that online solution is fast 
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Extensive Formulation

Hybrid Reformulation



• Obj-> Average: 0.85% optimality gap or 
relative error between objective function
• Nearly identical obj fxn values for most cases

• CPU: 5.27 sec for extensive
• CPU: 0.32 sec for hybrid model (tanh)
• CPU: 0.35 sec for ReLU-complementarity

Model mismatch-> 0.615% average error in 
real power variables
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Extensive vs Hybrid Comparison {Case 118}



Conclusions

• Modern grid systems require intensive optimization
• Enforcing grid security can be mathematically challenging
• Neural Network classifiers can be formulated naturally within NLP OPF problems

• ReLU, Tanh
• Reduced, Full Space

• High accuracy conferred through feasibility sampling
• Balance of computation and accuracy
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Future Work and Anticipated Challenges

• Larger case studies than Case 118
• Parallelization of sampling algorithm
• Input feature selection for NN classifier
• Selection of most prescient contingency events

• NN sparsification, parameterization [23]:
• Larger NN classifiers will be harder to optimize
• Sparsification can greatly speed up NLP solution
• Lottery ticket hypothesis (90% reduction possible with 

same accuracy)

• Further OptML tools:
• New ML models
• NN verification case studies

15[23] Frankle et al 2018 Archived

Non–intuitive generalization of over-parameterized 
deep ML models (Source: Reconciling Modern Machine 
Learning Practice and the bias-variance trade-off)
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Thank you!
Questions?
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AC Power Flow Equations
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AC Optimal Power Flow Formulation
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Security Constrained AC Optimal Power Flow
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Two Successful Modeling Paradigms Used for Engineering 
Applications

• First-principle (FP) models are difficult to develop, expensive to solve, but 
generalize well and are interpretable [1]
• Machine learning (ML) models are easy to develop, fast to solve, but generalize 

poorly and are not easily interpreted
• Creating models with both elements allows us to solve new problems, improve 

speed and accuracy of engineering model predictions [2]

22

Machine 
Learning

First 
Principles

• Conservation Balances
• Navier-Stokes
• Maxwell’s Equations

• Kinetic models
• Thermo Eq. of 

State
• AC Power Flow

• Process 
Models

• Unit Ops

• Heuristic 
empirical 
models 

• NN
• Gaussian 

Process

[1] Grossman et al. 2000 AIChE Journal
[2] Venkatasubramanian 2019 AiChE Journal



NN SC-OPF Comparison Results

• Literature study for extensive form SC-ACOPF takes ~400 sec [22]
• NN-SC-ACOPF averages 7 sec and never exceeds 15 sec
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[22] Kang 2015 PhD Thesis Texas A&M University

Formulation Avg Opt Gap CPU (s) % N-1 Insecure

SCOPF Extensive

NN SCOPF


