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Motivation
* For NV sensing, want NV layer that is dense and shallow. |

* Simplest method of N-implant has diminishing NV yield for shallower implants I
(~1% N to NV conversion).

* Aim: Optimize and characterize NV sensitivity with dense shallow implant through |
hot carbon implantation. :
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* N-implantation creates N and vacancy (V) defects which form NVs in anneal.

Adding more vacancies

* After NV preparation, further neutron/electron implant and anneal cycles
shown to improve NV yield.
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4 Hot implants
* Can also implant while heating diamond (~800 C) |

* Lattice heals throughout implant — prevent graphitization
* Vacancies mobile throughout implant — prevent divacancies I

* Up to 25% photoluminescence (PL) increase with shallow hot carbon co-implantation!?] |
* 45% bulk hot implant achieved with 285 h electron hot implant!t!

g

Lukin, Misha, KITP 2016.

. Lukin, Misha, KITP 2016.
* Experimentally demonstrate:

* Can hot carbon implants improve NV sensing properties in shallow diamonds?
* Optimization of hot implant parameters.

[1] Kucsko, Georg, et al. Phys. Rev. let. 121.2 (2018): 023601.
[2] Schwartz, Julian. (2012). SAND#



Experimental Setup

Green light shines on diamond.

External magnetic field 1solates aligned N'Vs.
Copper resonator on Si1C delivers MW signal.
Red fluorescence carries spin information such as
relaxation rates and spin population information.
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Characterization experiments

Photoluminescence map Optical spectrum Simultaneous PL, ODMR
Optical spectrum ODMR spectrum
17500 4 —g—r 0.6 1 ,'& =+~ Unimplanted
15000 1 —— Iimplanted 05 F“‘ === Implanted
1] "
12500 1 o # "f
s 4 it
iy 10000 E # n
E n 03 } u
3 75004 E v
[=} "
i -. . Y 021 j’ ‘%
.'“* F-- | 2500 0.1 ~ -4
implanted =~ unimplanted e — ) e . : . : , .
. 500 550 G00 650 00 750 800 850 00 1.81 1.82 1.83 1.84 1.85 1.B6 1.87
Wavelength (nm)

Frequency (GHz)

PLO/PLY) = .86
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Characterization experiments (cont.)
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Characterization experiments (cont.)
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10 Experimental results

* Expect/seek better implanted PL after anneal

* Pre-anneal results may yield interesting results when combined with
post-anneal results

* Parasitic defects which anneal out at high temperature, or their effect on
charge states!l], may be supported by a low PL ratio which increases after

anneal.
PL ratio, Imp./Unimp. .86 |
Optical spectra Qualitatively similar
ODMR FWHM (MHz) 6.9 7.7 I
T1 (ms) .57 .65
T2 (us) 2.86 1.93
T2* (ns) 72 133

[1] Dedk, Peter, et al. Physical review B 89.7 (2014): 075203. SAND#



11 Experimental results (cont.)

* Measured Implanted:Unimplanted PL ratio of 1.08 after anneal

* Even with deeper C implant, vacancy mobility may result in improved NV ||
yield

* Features due to thermometer melting during N-implant anneal; etching
suspected in subsequent hot implant anneal. |

* Suspected etching in tube furnace anneal; annealed batch demonstrates
ODMR con ' ' jgati

implanted | unimplanted
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Future Directions

* Improvement in PL is promising.

* Verify PL improvement, further characterize spin properties,
population densities, sensitivity.

* Optimize shallow hot implant conditions by tuning parameters —
fluence, temperature, length, etc.




