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We propose a surrogate-based optimization technique for optimizing variational quantum algorithms with noisy samples.
We demonstrate an improvement over SPSA on common problems such as QAOA and VQE, using a Gaussian kernel approximation as the surrogate.
We observe potential advantages over SPSA in convergence and experimental runtime, particularly for higher-dimensional problems.

Variational quantum algorithms Surrogate-based optimization for VQA

* Near-term quantum computers are noisy and have limited We propose a surrogate-based optimization (SBO)
coherence times. It will be years before we can run large- technique for optimizing variational quantum algorithms with
scale computations on a QC. noisy samples.

* For now, much r.esearch is focused on variational * SBO constructs a surrogate of the objective function
quantum algorlthms (V QA) landscape;

Hybrid of quantum + classical computation Take many (noisy) samples in a local “patch”
Run many small-scale quantum programs, supplemented by classical Construct the function surrogate in this patch, e.g., using a kernel
optimization approximation

Use the surrogate to estimate the coordinates of the minimum in this

Example: Quantum Approximate Optimization Algorithm (QAOA) patch

Use these coordinates as the center of the next patch
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SPSA for VQA

: : : : : : SPSA SBO with Gaussian kernel approximation
S PSA (Slmultane()us Pet turbatlon Stochastic Appf Oleathﬂ) 1S 40 iterations, 2 points per iteration 10 iterations, 8 points per iteration

commonly used for optimizing VQAs with noisy samples.

* SPSA attempts to follow the gradient in the objective
function landscape:

Take two (noisy) samples near an initial point

Approximate the gradient based on these samples

Move in the direction of the gradient for the next iteration

* Repeat until convergence.
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