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Background on Additive Manufacturing Characterization
« Motivation - Machine Learning
« Mechanical Testing and CT Characterization
« Model Calibration
« Fracture Predictions
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" LPBF can produce significant mechanical variability
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7/ Computed Tomography (CT) offers a way to quantify defect
structure
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Slide: Thomas Ivanoff

Challenges remain in use of CT data

(80) High threshold (230)

Serial sectioning Low threshold

hl = 3 -

Middle threshold (155)

Motivation: Can we make
meaningful performance predictions

with knowledge of defect structure? StEiEg

Retain object edges Retain object edges Lose object edges
Lose all void detail Capture some detail Capture voids (slightly
enlarged)




,/ Predicting behavior of additively manufactured parts using Deep

% Learning
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variations in mechanical performance

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.01342 Displacement (mm)
0.01208 i

0.01075

0.008416 o o Model Inputs per Voxel
0.008083 I 50801
04

0.006749 0.4 EQPSfing if Solid i
0.005415 {02 . " i

. : o 0 ifPore | om i
0.004082 3 ) ® L I nnnnnnn :
0.002748 ; f
0.001414

8.066e-005

Image: Jay Carroll

Johnson, K.L. et al. Computational Materials Science 2022



/ enabled by Machine Learning

/ Microstructure

Simulation Code N

Requirements: Training data with accurate
microstructure and mechanical behavior

Cumulative Failure Probability

/' Vision: Rapid failure prediction based on microstructure
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/ Ongoing work: Using GANs to augment CT images of AM material to
preserve underlying pore statistics

Generative Adversarial Networks (GANS) produce new
samples from a training set while preserving the underlying
statistics.
* GANSs are trained to minimize the distance between the
distribution of the training data and the generated samples.
e (Collaboration with Prof. Amir Farimani and Francis Ogoke
(CMU)
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Ogoke, O.F. et al. “Deep-Learned Generators of Porosity Distributions Produced During Metal Additive Manufacturing” (in preparation) ‘



P Can we accurately predict failure in AM parts?

Questions to be answered:

1. What level of scan resolution do we need?
2. Are surfaces or pores more important?
3. How do plasticity and damage models affect results?

Study carried out on Al-Si10-Mg specimens with pre-test CT scans and post-test blue light scans

Resolutions studied

*  64x64: ~43 ym voxels

o 128x128:~21 pum voxels

o 256x256: ~10 pm voxels

* Actual Scan: 4.56 pm voxels




/' Slide: Chris Laursen

LPBF process and pCT scanning parameters
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« Material: AISi10Mg = —X

« Heat Treatment: “Stress Relief Anneal” 290°C for 2 hrs % %

« Sample Orientation: Tensile direction normal to build = 3000 -

» (Cylindrical gauge high-throughput tensile samples
« Equipment: SLM Solutions 280HL
Laser Power: 350 W
Speed: 1100 mm/s
Hatch Spacing: 150 um
« Layer Thickness: 30 um
CT resolution: HE26 - 4.56 ym

Jay Carroll talk — “Dominant microstructural features
impacting failure in Additively Manufactured AlSi10Mg”
Feb. 3, 10:15AM-10:45AM
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/7 Modeling Workflow
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Mechanical Testing
/4
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(MPa) (%) (%) Modulus (GPa) (MPa) Yield Strain (%)
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/" Post Mortem Fracture Surface Processing
4

- Acquire data using the ATOS 3D structured light scanner (GOM)
- Import STL file into custom MATLAB script to adjust for plastic strain in the tensile axis (g, - €,)

rd

- Manually select the nodes of the fracture surface

Scanned Component Strain Adjusted Component Fracture Surface




/' Slide: Chris Laursen

/" Coupling the Data
/d

/ - Use the high-resolution scan as the datum for all processing

‘4 - Register low-resolution pCT scan to high-resolution pCT scan

- Import and register fracture components to the low-resolution scan

- Import and register the fracture surface to the fractured tensile sample

- Additional data registered to the high-resolution scan: Sample Surface, Regression Surface, Surface Voids

Fradiura Suriges

Fradiureel Blokierm




Calibration step 1: Capture plasticity response
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Initial calibration using coarse scan resolution with no pores
Plasticity is captured with Voce'! hardening model
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Addition of extra Swift! hardening term improves response

Accurate plasticity response requires right model form
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/" A mechanism for late stage hardening in bulk response

/ LD = Longitudinal Direction (Tensile Axis)
ND = Normal Direction
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 Stress partitioning study at Los Alamos Neutron Science Center revealed Si particles (~10%) remain

elastic until failure
Bjorn Clausen, Don Brown, and Milan Agnani ﬂ
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+ Add coarse scan mesh with pores

» \oids below scan resolution assumed
to be captured by initial void volume

fraction and Cocks-Ashby' void growth:

g e e A, {2 (2m — 1) (p)]

O=\ BT )" om+1 o,

« Modular damage model is not coupled
to stress response (no softening)

 Elements are removed when critical

damage (¢) threshold of 0.15 is
reached

'Cocks, A.C.F. and Ashby, M.F., Metal Science 1980
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/" Calibration step 2: Capture failure with damage model
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/" Crack path can accurately be captured (for certain samples)

g / Sample 08
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Higher resolution reduces force response
Smaller elements decrease failure strain with

local damage model ﬂ

~271 um voxels, different views




Higher resolution scans improve crack path predictions

Sample 08

Experiment - Blue

Model - Red
‘-: fﬁ“_- A 4
e e L T
~43 um voxels ~27 um voxels
688k elements 5.2M elements
144 cpus 1056 cpus
16 hour run time 24 hour run time




7/

Crack initiates at large surface defect
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/ Crack path is affected by large defects
/4

/ Sample 08
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Large void
appears to shift
crack path

~43 um voxels ~27 pm voxels




/ In a different sample, surface roughness appears to drive initiation,

while pore structure affects propagation
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// Additional work is needed to determine why crack paths in some
4 samples are incorrectly predicted

/ - Sample 02
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/7 Summary
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« Computed Tomography can be a powerful tool for assessing defects and model
validation/improvement

 Plasticity model form has large impact on accurately capturing response
« Surface roughness appears to drive initiation in these samples

« Coarse resolution was able to capture initiation location correctly

* Pores have minimal effect prior to peak load

« Pores have an effect on crack propagation

« Crack path s still incorrect at 21um voxel size for some samples
* 10 um voxel size running now




P Challenges

Simulations are very expensive, 10 um size ~46M elements
« Meshing can take hours in parallel
« Registration - easy to flip array axes
« Small decisions on boundary conditions have major effects
* Visualization

Future Work

* Incorporate low resolution scan of grips into model for better boundary condition
representation

* |teratively smoothing surfaces up to smooth cylinder - isolate pore effect
« Update damage parameters for smaller mesh size in higher resolution models
« Mesh size study for same voxel resolution




Questions?
Interested in a postdoc position in this area?
kyljohn@sandia.gov
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