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• Background on Additive Manufacturing Characterization
• Motivation – Machine Learning
• Mechanical Testing and CT Characterization
• Model Calibration
• Fracture Predictions



Laser Powder Bed Fusion (LPBF)

3

Bidare, P. et al. Acta Mat 2018

Image: www.wikipedia/selective_laser_sintering

Different LPBF Scan Paths
Bradley Jared (UTK)

1www.wikipedia/selective_laser_sintering

LPBF Process1



LPBF can produce significant mechanical variability
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(J. Madison, T. Ivanoff, O. Underwood, SNL)

Kramer et al., IJF 2019

Roach, A.M. et al. Additive Manufacturing 2020



Computed Tomography (CT) offers a way to quantify defect 
structure
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Images: David Moore



Challenges remain in use of CT data
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Lose all void detail

Retain object edges 
Capture some detail

Lose object edges
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CT

Voids Loses object edges 
False voids possible

Slide: Thomas Ivanoff

Motivation: Can we make 
meaningful performance predictions 
with knowledge of defect structure?



Predicting behavior of additively manufactured parts using Deep 
Learning 
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3D Convolutional Neural 
Networks were used to 

predict behavior, such as 
peak load, based on pore 

distributions orders of 
magnitude faster than 

traditional FEA.

Experimental CT pore distributions were used to generate 
synthetic pore realizations in tension specimens, which cause 

variations in mechanical performance

• Convolutional neural networks 
was used to classify part  
performance based on chosen 
failure metrics (peak load, 
EQPS, etc.) by learning effects 
of complex pore networks

• Synthetic data did not account 
for pore metrics other than 
volume.

Pore distributions 
significantly impacted 
force-displacement 

behavior and evolution of 
equivalent plastic strain 

(EQPS)

3D CNN Formulation

Image: Jay Carroll

Johnson, K.L. et al. Computational Materials Science 2022



Vision: Rapid failure prediction based on microstructure 
enabled by Machine Learning
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Simulation Code

Microstructure
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Image: oldcomputers.net

Requirements: Training data with accurate 
microstructure and mechanical behavior



Ongoing work: Using GANs to augment CT images of AM material to 
preserve underlying pore statistics
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• Generative Adversarial Networks (GANs) produce new 
samples from a training set while preserving the underlying 
statistics.

• GANs are trained to minimize the distance between the 
distribution of the training data and the generated samples.

• Collaboration with Prof. Amir Farimani and Francis Ogoke 
(CMU)

GAN network schematic

Ogoke, O.F. et al. “Deep-Learned Generators of Porosity Distributions Produced During Metal Additive Manufacturing” (in preparation) 



Can we accurately predict failure in AM parts? 
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Questions to be answered:

1. What level of scan resolution do we need?
2. Are surfaces or pores more important?
3. How do plasticity and damage models affect results?

Study carried out on Al-Si10-Mg specimens with pre-test CT scans and post-test blue light scans

Resolutions studied
• 64x64: ~43 µm voxels
• 128x128: ~21 µm voxels
• 256x256: ~10 µm voxels
• Actual Scan: 4.56 µm voxels



LPBF process and µCT scanning parameters
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• Material: AlSi10Mg
• Heat Treatment: “Stress Relief Anneal” 290°C for 2 hrs
• Sample Orientation: Tensile direction normal to build
• Cylindrical gauge high-throughput tensile samples

• Equipment: SLM Solutions 280HL
• Laser Power: 350 W
• Speed: 1100 mm/s
• Hatch Spacing: 150 µm
• Layer Thickness: 30 µm

• CT resolution: HF26 - 4.56 µm

Jay Carroll talk – “Dominant microstructural features 
impacting failure in Additively Manufactured AlSi10Mg” 
Feb. 3, 10:15AM-10:45AM

Slide: Chris Laursen



Modeling Workflow
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Import Image Threshold

“High Res” Tiff Stack

Slide: Chris Laursen
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Cubit/Sculpt 
Mesh

Simulation

Calibrate plasticity 
parameters with 
coarse, pore-free 

mesh of one sample

With plasticity 
parameters fixed, 
calibrate damage 
parameters with 

coarse, porous mesh 
of one sample

Predict failure in all 10 
porous samples using 

varying resolution 



Mechanical Testing
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Top

Bottom

UTS 
(MPa)

UNFelg 
(%)

Ductility 
(%)

Unloading 
Modulus (GPa)

Yield Stress 
(MPa) Yield Strain (%)

H-BR05-4 288.3 4.927 5.738 60.4 196.1 0.526
H-BR05-5 284.2 4.997 6.350 58.6 175.9 0.500
H-BR05-6 287.6 5.412 6.941 58.3 177.7 0.505

Slide: Chris Laursen



Post Mortem Fracture Surface Processing
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- Acquire data using the ATOS 3D structured light scanner (GOM)
- Import STL file into custom MATLAB script to adjust for plastic strain in the tensile axis (εunf – εy )

- Manually select the nodes of the fracture surface

Scanned Component Strain Adjusted Component Fracture Surface

Slide: Chris Laursen



Coupling the Data
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- Use the high-resolution scan as the datum for all processing

- Register low-resolution µCT scan to high-resolution µCT scan

- Import and register fracture components to the low-resolution scan

- Import and register the fracture surface to the fractured tensile sample

- Additional data registered to the high-resolution scan: Sample Surface, Regression Surface, Surface Voids

Registered Low-res Fractured Top

Fractured Bottom

Fracture Surface

Slide: Chris Laursen



Calibration step 1: Capture plasticity response
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• Initial calibration using coarse scan resolution with no pores 
• Plasticity is captured with Voce1 hardening model 

No Pores 1Voce, E., J. Inst. Metals 1948



Accurate plasticity response requires right model form
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• Addition of extra Swift1 hardening term improves response

Voce

Exp.

Swift-Voce

No Pores 1Swift, H.W., JMPS 1952, 



A mechanism for late stage hardening in bulk response
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Bulk

Al

Si

ND

LD

• Stress partitioning study at Los Alamos Neutron Science Center revealed Si particles (~10%) remain 
elastic until failure

Bjørn Clausen, Don Brown, and Milan Agnani

Elastic Si

elastic plastic

Plastic Al

LD  = Longitudinal Direction (Tensile Axis)
ND = Normal Direction



Calibration step 2: Capture failure with damage model
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Exp.

Swift-Voce 
+ Damage

1Cocks, A.C.F. and Ashby, M.F., Metal Science 1980

Pores 
Included



Crack path can accurately be captured (for certain samples)
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~21 µm voxels, different views

• Higher resolution reduces force response
• Smaller elements decrease failure strain with 

local damage model

Pores 
Included

Sample 08



Higher resolution scans improve crack path predictions
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Experiment – Blue
Model - Red

~43 µm voxels
688k elements

144 cpus
16 hour run time

~21 µm voxels
5.2M elements

1056 cpus
24 hour run time

Sample 08



Crack initiates at large surface defect
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Crack path is affected by large defects
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~43 µm voxels ~21 µm voxels

Experiment – Blue
Model - Red

Large void 
appears to shift 

crack path

Sample 08



In a different sample, surface roughness appears to drive initiation, 
while pore structure affects propagation

24
~43 µm voxels

 with pores
~21 µm voxels 

with pores
~21 µm voxels 

no pores

No Pores

Sample 01

Pores 
Included



Additional work is needed to determine why crack paths in some 
samples are incorrectly predicted
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Sample 02



Summary
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• Computed Tomography can be a powerful tool for assessing defects and model 
validation/improvement

• Plasticity model form has large impact on accurately capturing response
• Surface roughness appears to drive initiation in these samples
• Coarse resolution was able to capture initiation location correctly
• Pores have minimal effect prior to peak load
• Pores have an effect on crack propagation
• Crack path is still incorrect at 21um voxel size for some samples

• 10 um voxel size running now



Challenges
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• Simulations are very expensive, 10 um size ~46M elements
• Meshing can take hours in parallel
• Registration – easy to flip array axes
• Small decisions on boundary conditions have major effects
• Visualization

• Incorporate low resolution scan of grips into model for better boundary condition 
representation

• Iteratively smoothing surfaces up to smooth cylinder – isolate pore effect
• Update damage parameters for smaller mesh size in higher resolution models
• Mesh size study for same voxel resolution

Future Work



Questions?
Interested in a postdoc position in this area?

kyljohn@sandia.gov
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