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s 1 Background

Harmonized Automatic Relay Mitigation of Nefarious Intentional Events (HARMONIE)

Towards meeting the need for an SPS to adapt to quickly unpredictable events

This paper: We are investigating the feasibility of processing physical and network data
jointly to identify disturbances and gain insights to eventually deploy a corrective action
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+ 1 Background

All cyber data can be passed through a
graph convolutional neural network
(GNN) to perform supervised learning to
identify unsafe states

= Vertices are devices on the network
= Edges are network traffic flows

All physical data can be passed through
a separate graph convolutional neural
network to perform supervised learning
to identify unstable states

= Vertices are PMUs, relays, HMIs, out-of-
band sensors, buses, etc.

= Edges are information flows




s | Background

The cyber and physical graphs contain overlapping nodes

Our deep learning architecture will process these graphs jointly




6 | Background

Network traffic and phasor measurements are combined into the same graph
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7 ‘ Data Collection

Using the Western Systems Coordinating Council (WSCC) 9-bus power system
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s | Data Collection

* 2 minute captures broken into 30-second sliding windows
- Disturbances, when present, happen at around 1 minute
«  Models will be identifying if a disturbance occurs within a 30-second sliding window

50 total scenarios
*  Normal operations

« Denial of Service (DoS) attacks

+ False command injection (FCI) attacks
«  Time delay (TD) attacks

« Single-line-to-ground (SLG) faults

« Cyber and physical data are interleaved and represented as JSON




0 1 Model Architecture: Graph Neural Network

To process spatially-structured data (particularly useful for network traffic), we employ a
Graph Convolutional Neural Network (GCNN/GNN) [1]

Neural message passing: Each vertex starts with a learned state, states are adjusted
using the edges between the vertices
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1 | Model Architecture: Transformer

To process temporal data (particularly useful for physical data), we employ a

Transformer model [2]

Popular in natural language processing, can be applied to physical systems [3]

Repeatedly transforms a sequence to another sequence

A weighted mean of edge vectors encodes

temporal information
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» 1| Model Architecture: Random Windowed Transformer

- By default, Transformers use 0(n?) memory

« Splitting the sequence into fixed-size windows reduces memory complexity
Loses long-term dependencies

- We try splitting the data into random fixed-size windows to maintain long term

dependencies

Dense attention matrix

Windowed attention matrix

Random-windowed
attention matrix




3 I Model Architecture: Rationales

Goal: Move towards identifying the cause of a disturbance

We use Rationale Neural Networks [4] to learn to mask irrelevant timesteps (packets or

sensor measurements)

The step before the GNN/Transformer in the model architecture

Can later be interpreted as the “rationale” for predicting the existence of a disturbance
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2 | Results

* For each architecture:

« Split the data into 5 folds and trained 20 models, one for each combination of validation

and test folds

- Generated and aggregated predictions for each test fold, then aggregated the results

below
Cyber Disturbance Detection | Physical Disturbance Detection
Architecture Rationale % | MCC AUC MCC AUC
Traditional Transformer 39.3% 0.77 0.98 0.57 0.85
Random-windowed Transformer 46.1% 0.70 0.95 0.63 0.87
GNN 48.0% 0.85 0.96 0.18 0.68
GNN + Transformer N/A 0.74 0.97 0.30 0.77

&
|
|




s | Conclusions

The GNN is most effective with cyber disturbances, the Transformers are most
effective with physical disturbances

 Logical given the relative strengths of each of these architectures

Cyber disturbances are easier than physical disturbances for the model to detect
- Understandable since cyber disturbances are often a single or multiple packets

Combining the GNN and Transformer did not outperform either independently as
expected

The Rationale Neural Network component kept ~40-50% of the edges

- Whether an edge is kept or masked is largely determined by whether the edge is a packet
or phasor measurement

« Good starting point, need more downsampling to be useful




s | Thank you!

Questions?
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