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Background

Harmonized Automatic Relay Mitigation of Nefarious Intentional Events (HARMONIE)

Towards meeting the need for an SPS to adapt to quickly unpredictable events

This paper: We are investigating the feasibility of processing physical and network data 
jointly to identify disturbances and gain insights to eventually deploy a corrective action
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Background4

All cyber data can be passed through a 
graph convolutional neural network 
(GNN) to perform supervised learning to 
identify unsafe states
 Vertices are devices on the network
 Edges are network traffic flows

All physical data can be passed through 
a separate graph convolutional neural 
network to perform supervised learning 
to identify unstable states
 Vertices are PMUs, relays, HMIs, out-of-

band sensors, buses, etc.
 Edges are information flows



Background

The cyber and physical graphs contain overlapping nodes

Our deep learning architecture will process these graphs jointly
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Background

Network traffic and phasor measurements are combined into the same graph
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Data Collection

Using the Western Systems Coordinating Council (WSCC) 9-bus power system
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The diagram of hierarchies for the simulated grid

The cyber-physical model for the WSCC 9-bus case



Data Collection

• 2 minute captures broken into 30-second sliding windows
• Disturbances, when present, happen at around 1 minute
• Models will be identifying if a disturbance occurs within a 30-second sliding window

• 50 total scenarios
• Normal operations
• Denial of Service (DoS) attacks
• False command injection (FCI) attacks
• Time delay (TD) attacks
• Single-line-to-ground (SLG) faults

• Cyber and physical data are interleaved and represented as JSON
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Model Architecture: Graph Neural Network

To process spatially-structured data (particularly useful for network traffic), we employ a 
Graph Convolutional Neural Network (GCNN/GNN) [1]

Neural message passing: Each vertex starts with a learned state, states are adjusted 
using the edges between the vertices
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Model Architecture: Transformer

To process temporal data (particularly useful for physical data), we employ a 
Transformer model [2]

Popular in natural language processing, can be applied to physical systems [3]

Repeatedly transforms a sequence to another sequence
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Model Architecture: Random Windowed Transformer12

Dense attention matrix Windowed attention matrix Random-windowed 
attention matrix



Model Architecture: Rationales

Goal: Move towards identifying the cause of a disturbance

We use Rationale Neural Networks [4] to learn to mask irrelevant timesteps (packets or 
sensor measurements)

The step before the GNN/Transformer in the model architecture

Can later be interpreted as the “rationale” for predicting the existence of a disturbance
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Results14

• For each architecture:
• Split the data into 5 folds and trained 20 models, one for each combination of validation 

and test folds
• Generated and aggregated predictions for each test fold, then aggregated the results 

below



Conclusions

• The GNN is most effective with cyber disturbances, the Transformers are most 
effective with physical disturbances

• Logical given the relative strengths of each of these architectures

• Cyber disturbances are easier than physical disturbances for the model to detect
• Understandable since cyber disturbances are often a single or multiple packets

• Combining the GNN and Transformer did not outperform either independently as 
expected

• The Rationale Neural Network component kept ~40-50% of the edges
• Whether an edge is kept or masked is largely determined by whether the edge is a packet 

or phasor measurement
• Good starting point, need more downsampling to be useful
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Thank you!

Questions?
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