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Evaluated hydrogen effects on deformation mechanisms of

001

316L single crystals

orientation
of specimen
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marking

* Mini-dogbone tensile samples extracted from 316L single
crystal cylinders with three different orientations

Samples polished prior to testing to enable EBSD

Half of the tensile samples pre-charged with hydrogen
Strains measured with DIC and laser extensometer
Interrupted testing to evaluate evolution of deformation
Stress-strain curves and EBSD observations used to inform
crystal plasticity modeling (yielding, hardening rate, grain
rotation, etc.)
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3 orientations parallel to tensile axis : <001>, <011>, <123>
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Differences in stress-strain behavior due to orientation
and number of active slip planes

DIC videos for first 10% strain from interrupted tests
<001> - <011>
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Yield stress, stages of hardening, hardening rate, and
necking behavior are dependent on orientation and

hydrogen content

No H Tensile Curves Yield behavior based on Schmid’s Law
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Yield stress does not
correspond to Schmid’s law

Amount of increase in yield stress due
to hydrogen is dependent on orientation
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For <001> orientation hydrogen

increased flow stress and decreased
reduction of area

No significant twinning, martensite formation,
or grain rotation observed through EBSD
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For <123> orientation hydrogen increased flow stress,

decreased total hardening, and decreased load drop
at onset of diffuse necking s

250 123PC

+ Grain rotated to <001>-<111> line
and a second slip system activates

* No significant twinning or martensite
formation observed through EBSD
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Engineering Stress (MPa)

Hydrogen affects deformation of <011> orientation prior to
necking
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For <011> orientation, hydrogen

decreased hardening rate between 20% and 50% strain
caused twinning to occur at lower strains

increased flow stress

decreased uniform elongation

decreased reduction of area
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Significantly more twinning at 50% *() g
strain when hydrogen is present N [
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“For <011> at low strains the highest local misorientations (GNDs) are
at edges of regions with slip lines in multiple directions

Kernel Aver, Misorient.

 Initially slip occurs primarily on one
slip plane

« Shortly after yielding slip begins to
occur on a second slip plane

» Dislocation interactions occur which
can form obstacles to dislocation X o
motion (Lomer-Cottrell locks) : ;

» Geometrically necessary dislocations
(GNDs) accumulate where slip is
blocked at the obstacles
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With further straining tensile axis of <011> rotates towards <111> direction
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Hydrogen affects grain rotation and twinning planes for <011>

» For no H tensile axis rotates mostly towards a single <111>, but <011> PC rotates towards two different <111>.
*  These are rotations in the direction of the leading partial dislocations on the active slip plane

+  Twinning occurs primarily on one plane with no H, but with H significant twinning occurs on two different planes

<011> No H rotates mostly to a single <111> <011> PC rotates towards two <111>
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Necked. Twinning
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For <011> hydrogen causes twinning to occur at a lower GN

density
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* GND density estimated from kernel average : ]
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* GND density increases more at lower strains
with hydrogen

+ Twinning commences at lower GND density and
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-Twinning in necks of <011> and <123> specimens but not <001>
No e-martensite observed, even in neck of <011> PC specimen
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Two twinning
directions in
neck of <123>
specimens

<001>PC [
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Small amount of
a‘-martensite in
<011> specimen

Phase Map 001

Blue = y-austenite
Red = a‘-martensite Dm

Yellow = e-martensite




racture morphology dependent on orie on and prese
001 No H 011 NoH




&)

Summary

Tensile testing and EBSD of single crystal specimens with three different orientations parallel to the tensile axis
(<001>, <011>, or <123>) and with and without hydrogen was performed

The yielding behavior of the three tested orientations did not correlate to Schmid’s law and the increase in yield
stress with hydrogen was dependent on orientation

Hydrogen affected the flow stress and failure mechanisms of the <001> and <123> oriented single crystals, but did
not significantly alter the deformation mechanisms prior to necking
Hydrogen affected the stress-strain response and deformation mechanisms of the <011> specimen prior to necking

For the <011> oriented specimen twinning occurred at lower strains and a lower GND density when hydrogen was
present

Twinning was observed in the necks of the <011> and <123> specimens, but not the <001> specimen, and no
e-martensite was observed

The observed stress-strain behavior and deformation phenomena are being used to inform crystal plasticity
modeling

Questions?

brian.kagay@MPA.uni-stuttgart.de



