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Robo-Met.3D® at Sandia National Laboratories




Robo-Met.3D® at Sandia National Laboratories

System Components

+ Automated robotic polisher with variable polishing wheel

+ Automated high-resolution inverted microscope with montage imaging
* Dual internal ultrasonic cleaning stations

» Three internal compact chemical etching stages

» External operator station for real-time observation of data collection

Customized Components

+ 8+ Multi-platen polishing surface cassette interchange system

+ Imaging in brightfield, darkfield & polarized light modes

+ 3 additional turreted microscope objective positions available

» Added monitor(s) for customer viewing of data collection real-time

+ Viewport for in-situ verification of polishing load

+ Laser triangulation for high precision material removal measurement

* Pre-set in-line locations for additional sample surface diagnostics

* Original LabView program w/GUI for real-time analysis of data collection

Benefits

» Sectioning rates up to 100 times the baseline manual process

+ Automated handling eliminates variability caused by human handling

* Precise repeatability for imaging location, illumination, contrast, exposure &
feature focus

+ Demonstrated repeatable sectioning thicknesses down to 1.0 um per slice

* Documented slice rates of up to 20 slices per hour

» Applicable to high and low strength metals (e.g. Al, Cu, Ti, Steel, Ni),
composites, ceramics, foams, and bone

Resolution

Multiple optical objectives in a

rotating turreted mount

5X — 2.10 um/pixel
10X — 1.05 um/pixel
20X — 0.53 um/pixel

50X — 0.21 um/pixel




6 Robo-Met.3D® at Sandia National Laboratories

Ultrasonic Bath & Air Dry Microscope Load




7 Robo-Met.3D® at Sandia National Laboratories

Transformer

Metal

Encapsulant

Determination of
crack size, severity
and depth in glass-to-
metal seals for
connectors

Identification of manufacturing defects in
multi-material parts *

Subsurface damage in
thermal spray coatings *

weave pattern consistency, voiding and resistance

Explicit quantification of location, size and to charring in fiber-reinforced-composites*

morphology of porosity in laser welds Brake, Hall, Madison Surface & Coating Technology 310 (2017)



8 Robo-Met.3D® at Sandia National Laboratories

Buluonoeg
|eles

Investigation of solder
contact separations in
micro-inductors *

Ivanoff, Madison Advanced Materials & Processes 178 (2020)

Identification of crack length, width and chirality in pre- and
post- heat-treatment springs *

Defect
identification and
through-thickness

inspection of a
multi material
component *

Characterization of porosity volume fraction, nearest
neighbors and connectivity in Pb-Zr-Ti *




3D Reconstruction
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2 1 Stochastic Model and Algorithm Creation
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Stochastic Model and Algorithm Creation

* Linear model used for system

* Optimization problem used to minimize the variance
of the output subject to the system dynamics

‘ o Historical Data JMMEy = uc + 1) u |

240

Linear regression model for
system dynamics

yi =c+b'u,

Optimization problem

u; = argmin uTEbbu -+ 2uTEbC
U

T
St Ue+ UpU; = T
u; €U



141 Stochastic Model and Algorithm Creation

* Optimization problem used to
minimize the variance of the output
subject to the system dynamics

* Run-to-run control algorithm used to

. Optimization problem
consistently removal target amount

e u; = argmin uTEbbu -4 QHTEE}C
U

ri Target Removal Amount L

u System Inputs T T )
S.L. UeT UpU; = T
Uc Estimated variance of output
Up Estimated variance of inputs ui E Z/{
Zbb Estimated covariance of the inputs
Zhe Estimated covariance of the inputs and
outputs
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* Optimization problem used to
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* Run-to-run control algorithm used to

. Optimization problem
consistently removal target amount
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6 | Stochastic Model and Algorithm Creation

* Optimization problem used to

minimize the variance of the output

subject to the system dynamics

* Run-to-run control algorithm used to

consistently removal target amount

Real World Values

ri
u
Uc

Hb

Ybb

z:bc

Target Removal Amount
System Inputs
Estimated variance of output
Estimated variance of inputs
Estimated covariance of the inputs

Estimated covariance of the inputs and
outputs

Optimization problem

esnin (54 6

S.L. U+ U iy

@eu



71 Stochastic Model and Algorithm Creation

* Optimization problem used to
minimize the variance of the output
subject to the system dynamics

* Run-to-run control algorithm used to

. Optimization problem
consistently removal target amount
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Exponentially Weighted Moving Average |
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Conclusion

* Using an engineering controls approach, we have developed an experimentally accurate
model estimate and system abstraction for a mathematical model of an automated
mechanical serial-sectioning system

* Using iterative run-to-run control, we’ve developed and successfully demonstrated a
means to transform an open-loop automated mechanical serial-sectioning system into a
closed-loop operation that can iteratively revise inputs to produce an optimized
experimental setup for a given criteria.

* Using historical data from a decade of experiments, an optimization algorithm was
trained which, when implemented, was shown to converge to within 94%+/- 10% of a
predetermined target removal rate within 10 iterations or fewer for both a previously
executed and a never-before run experiment
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Future Work

* Moving forward, we would like to examine the following:

* Develop a mathematical criteria for image quality to operationalize it as an
optimization criteria in this closed—loop approach

* Expand our existing optimization framework to include immediately accessible
experimental parameters such as polishing pad speed (1.e. RPM); polishing pad
selection (i.e. cloth knap and/or grade); and polishing suspension (i.e. abrasive

type and size)

* Improve our model accuracy through methods such as a Gaussian Process
Regression which should, in theory, also aid model efficiency
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32 Robo-Met.3D® at Sandia National Laboratories
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34

Motivation
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Physical System Results

-

4660-

4640-

4620-

:

:

.
Ln
5
S =
B

f‘¢|

a520-} 4] ++ﬁ’—4ﬁ% + 4’ 4’

‘

Average Focus Height (pm)

4500-

4480,

L | | e | T L | L T IR R s
0 1 2 3 4 5 a6 7 &8 9 1011 1213 14 15 16 17 13 19 20

Slice

Total 6.7 average removal, 9.47 after 6 slices. Target 10.

Total 3.2 average removal. Target 5

Average Focus Height (pm)

1 1 1 1 1 1 1 1 1 1 1
9 10 11 12 13 14 15 16 17 18 19
Slice




36

Physical System Results
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