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2 | Nitrogen-Vacancy Color Centers in Diamond o?/;
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Focused lon Beam Implantation Enables Precision Placement

<50 nm Targeting Resolution
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- Material needs to form a low melting point liquid metal alloy - Nitrides do not apply

|
; 1 Liquid Metal Alloy lon Sources - Available lons m
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s | Fabrication of a N Containing Liquid Metal

Implantation

- Implanted a Aug,Sn,, 200 pm thick foil

with N to 5x10'"7 ions/cm?

- Level based on solid-solubility limit for H

Characterization

- Elastic Recoil Detection (ERD):

50 nm of foil as expected

- Cannot interrogate
deeper due to multiple
scattering of deep ions

B. L. Doyle and P. S. Peercy, Appl.
Phys. Lett. 34, 811 (1979)
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s | Tip Fabrication from AuSnN foil

1. Heat W tip to remove surface
contaminants

2. Tack weld foil to the tip
Heat tip to melt foil onto tip

4. Repeat steps 2. + 3. until tip + parts
of reservoir is filled

5. Testtip emits

6. Install tip into nanolmplanter




|
7 ‘ Characterization - Mass Spectrum via IBIC @!

lon Beam Induced Charge (IBIC) to measure N beam

1.2 5 Sn+ T Vbias

1 —— 100 keV _
1.0 - Autt 4 — N* Detection
< ' | )
=0 i ‘-T -
E ' el
o E
5 0.6 1 . Side View
@)
5 0.4
q) - - —
0.30 4 i 0.012
0.2 N??? Sn++ = ‘0-25__ 0.010 4
E —_ 1 —_ 0.008
0.0 1 i I Sl 18 oo N*
é 0.15 4 - E) 0_‘004_- I
T T T T T T T T T T T T 3 1 3 nem |
0 20 40 60 80 100 120 E 010 g ]
@ D 0.000 4
Mass (amu) © 00 " oo I
0.00 7 0.004
0.05 T T T T T T -0.008 T T T T T T T T T T T T T
6.5 7.0 75 10 1 12 13 14 15 16 17
Mass (amu) Mass (amu) I



60 T T T T T T T T T T T T

50 1. Fit peak to Gaussians

I
8 ‘ Characterization - Beam Current measured via IBIC m
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9 | Characterization - Spot Size via IBIC
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0o I N Source - Improvements

Higher beam current

- Thinner foil to same fluence - higher overall concentration

- Fabrication in N atmosphere - additional N absorption

\

400 nm implant layer

200 um
25 um




4 successfully characterized
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- | Interaction with CINT Users - Design to Manuscript

M. Hosseini @ Purdue
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How can YOU access these capabilities? CINT User Proposal

THE CENTER FOR
INTEGRATED NANOTECHNOLOGIES

The Center for Integrated Nanatechnologies (CINT) is a Department of Energy
Office of Science Nanoscale Science Research Center. CINT offers world-leading
seientific expertise and specialized capabilities to create, characterize, and integrate
nanostructured materials at a range of length scales, from the nano- to meso-scale.
It is jointly operated by Los Alamos and Sandia national laboratories and leverages
the unmatched scientific and engineering expertise of the host labs.

Integration is the key to exploiting the novel properties of nanoscale materials and creating new technologies. CINT's scientific staff and
capabilities are organized around four interdisciplinary science thrusts which address different challenges in nanoscience integration.

In-Situ Characterization and Nanophotonics & Soft, Biological & Huantum
Nanomechanics Optical Nanomaterials Composite Nanomaterials Materials Systems
Developing and implementing Synthesis, excitation, and energy Synthesis, assembly, and Understanding and controlling
world-leading capahilities to study transformations of optically active characterization of soft, quantum effects of nanoscale
the dynamic response of materials nanomaterials and collective or emergent  biomolecular, and composite materials and their integration
and nanosystems to mechanical, electromagnetic phenomena (plasmanics, nanomaterials that display into systems spanning multiple
electrical, or other stimuli. metamaterials, photanic lattices). emergent functionality, length scales.

CINT is an Office of Science national user facility. GINT helps the international research community perform cutting-edge research in the areas of nanoscience and
nanotechnalogy, and is available free of charge for open science. As a user facility, CINT has the structure and mission to collaborate widely across academia,
industry, and within DOE Iabs. Access is via peer-reviewed technical proposals. Proprietary research may be conducted in accordance with Federal regulations for
full-cost recovery. CINT cannot provide funding to users.

The Center for Integrated
Nanotechnologies (CINT)

https://cint.lanl.gov/
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