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, | Verification of quantum computer output

In the next decade: 100s — 1000s of qubits + poly depth circuits

* How do we verify the correctness of the output of such systems?
* Many interesting applications will have output that is not
efficiently verifiable by classical computers
* Microscopic modeling will be impossible Honeywell says quantum computers will

outpace standard verification in ‘18 to 24
months’

March 29, 2021



; | Scalable verification

Verification goal: estimate fidelity of actual circuit with ideal circuit

We are given a circuit of interest C, which must contain only:

o Arbitrary single-qubit gates
o Two-qubit gates that are self-inverse and Clifford (not an essential assumption).

agals
Estimate fidelity of an implementation of this circuits using data from executing circuits

sampled from three different mirror circuit [1] ensembles

° Each ensemble is a slight variation of the circuit followed by its inverse

[1] Proctor et al. “Measuring the capabilities of quantum computers” Nature Physics, 18, 75 (2022)



4 ‘ The three ensembles

Original circuit - -

- Inverse of C and state
preparations with
randomized
compilation?

State preparation with Haar-
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The three ensembles
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S, = Success Prob(M,(C)) = F(SPAM ) * F(C) * F(RC[C* ])]

S, = Success Prob(M,(C)) = F(SPAM ) * F(RC[C]) * F(RC[C* ]) = F(SPAM ) * F(RC[C!])2
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The actual formula we use is slightly more complex, because (process) fidelities don’t multiply...



6 ‘ Circuit fidelity estimate
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- | lllustrations

Quantum approximate algorithm (QAOA) circuits

/ Quantum circuit for n-qubit, p-layer QAOA \
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* Variable number of qubits, QAOA layers ranging from p=1 to p=10



Predicted Fidelity x-(C) (%)

g ‘ Illustrations

Comparison of estimated process fidelity to actual process fidelity

Stochastic Pauli Errors
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True Circuit Process Fidelity F(C) (%)

Perfect correlation under stochastic

noise model

— n =3 -8 qubits
—p=1,2,5_8,10 QAOA layers
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Hamiltonian and Stochastic Pauli Errors
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True Circuit Process Fidelity F(C) (%)

Excellent correlation under noise
model with equal stochastic and
Hamiltonian contributions

— For each (n, p) there are 10 problem instances (300 total circuits).
—1000 of each type of mirror circuit for each QAOA circuit.
— Each QAOA instance (+ the 3000 corresponding mirror circuits) has it's own randomly sampled error model.
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Hamiltonian Errors
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Good correlation, with some
outliers, under noise model with
only Hamiltonian/coherent errors
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s | Summary

* We have developed a scalable way to verify accuracy of quantum circuit implementations
* Scalability:
* No classical simulation of quantum circuits necessary
* Requires execution of an ensemble of auxiliary circuits of roughly twice the depth
* Analysis and sample complexity have weak dependence on number of qubits, circuit depth

* Solves one of the major challenges emerging in the NISQ era of quantum computing
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