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ABSTRACT: This paper presents a new, largely phenomenological, model for rock salt that
includes branches for pressure solution and dislocation glide viscoplasticity. The dislocation
glide branch utilizes back stress hardening for heterogeneously distributed dislocations and
drag stress hardening for uniformly distributed dislocations. By transitioning between pressure
solution at low strain rates, back stress dominated hardening at low to medium strain rates, and
drag stress dominated hardening at high strain rates, a single model calibration can capture the
behavior of Waste Isolation Pilot Plant salt over strain rates ranging from 10–12 to 10–4 1/s, and
temperatures from 20 to 60◦C. The same model calibration can also predict the Bauschinger
effect (and represent reverse creep). Although room for improvement exists, the model’s elegant
formulation can capture an assortment of damage-free behaviors.

1 Introduction

Rock salt constitutive models are used to simulate the evolution of mines, boreholes, storage
caverns for gases and liquids, and nuclear waste repositories in rock salt formations. A wide va-
riety of thermo-mechanical constitutive models have been proposed for rock salt, yet even the
damage-free (micro-crack-free) thermoviscoplastic behavior remains difficult to capture. The
Munson-Dawson model (Reedlunn et al. 2022), for example, can be calibrated against damage-
free constant stress tests with low to medium steady-state strain rates (10–12 to 10–8 1/s), but
such a calibration fails to represent damage-free constant strain rate tests at high strain rates
(10–6 to 10–4 1/s). Capturing the damage-free behavior at these high strain rates is important
because high strain rates are frequently used to characterize the mechanical behavior of dam-
aged salt (dilated salt with micro-cracks). A constitutive model must first adequately capture
damage-free behavior before attempting to represent how damage degrades salt’s strength.

This paper presents a new model for the damage-free behavior of salt. Model development
was influenced by a variety of models for metals (see J. Chaboche (2008) for a review) and
the Aubertin, Yahya, et al. (1999) model for salt. Section 2 defines the new model formulation,
Section 3 briefly discusses the formulation, Section 4 details four model calibrations, Section 5
partially validates the model, and Section 6 provides a short summary.

2 Model Formulation

Several preliminaries bear mentioning before defining the model formulation. First, compressive
strains and stresses are treated as positive. Second, variables represented by capital letters
are material constants, while variables represented by lower case letters are functions of other
variables. Third, this section presents the model in an infinitesimal strain setting, but one can
easily extended the model into the finite deformation realm using hypoelasticity.

The model additively decomposes the total strain rate ¤ε into an elastic strain rate ¤εel, a
thermal strain rate ¤εth, and a viscoplastic strain rate ¤εvp:

¤ε = ¤εel + ¤εth + ¤εvp. (1)
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The elastic behavior utilizes generalized Hooke’s law in rate form to relate ¤εel, the fourth-order
isotropic elastic stiffness tensor EEE, and the stress rate ¤σ:

¤σ = EEE : ¤εel = EEE :
�
¤ε – ¤εth – ¤εvp

�
(2)

EEE = (E1 – 2
3 E2) I ⊗ I + 2 E2 III, (3)

where E1 is the bulk modulus, E2 is the shear modulus, I is the second-order identity tensor,
and III is the fourth-order symmetric identity tensor. The thermal strain portion of the model is
simply

¤εth = –A ¤𝜃 I (4)

where A is the coefficient of thermal expansion, and 𝜃 is the absolute temperature. The vis-
coplastic strain rate is additively decomposed into a pressure solution strain rate ¤εps and a
dislocation glide strain rate ¤εdg

¤εvp = ¤εps + ¤εdg. (5)

The ¤εps branch captures steady-state viscoplastic behavior at low stresses. This branch
utilizes the following flow rule,

¤εps = ¤̃𝜀 ps 𝜕𝜎̃
ps

𝜕σ
, (6)

where ¤̃𝜀 ps and 𝜎̃ ps are the equivalent pressure solution strain rate and stress, respectively.
Pressure solution viscoplasticity is taken to be independent of the mean stress 𝜎m = tr(σ)/3
and driven entirely by the deviatoric stress σdev, so the pressure solution stress is simply

σ ps = σdev = σ – 𝜎m I. (7)

This stress tensor is reduced to a scalar equivalent (von Mises) pressure solution stress as

𝜎̃ ps =
√︃

3
2 σ ps : σ ps. (8)

The equivalent pressure solution strain rate is given by

¤̃𝜀 ps = P1 exp
�
–P2

𝜃

�
𝜎̃ ps

𝜃
, (9)

where Pj are material constants (C. Spiers et al. 1990). Eq. (9) assumes any non-zero 𝜎̃ ps

causes pressure solution flow, such that the pressure solution quasi-static (rate-independent)
yield surface is simply a point at σ = 0.

The dislocation glide branch ¤εdg dominates transient viscoplastic behavior at low stresses,
and all viscoplastic behavior at medium to high stresses. Dislocation glide utilizes the following
flow rule,

¤εdg = ¤̃𝜀 dg 𝜕𝜎̃
dg

𝜕σ
, (10)

where ¤̃𝜀 dg and 𝜎̃ dg are the equivalent dislocation glide strain rate and stress, respectively. In
contrast to the pressure solution branch and the majority of other salt models, the model as-
sumes dislocation glide is driven by a dislocation glide stress (a.k.a. effective stress)

σ dg = σdev – b (11)
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that includes b, a second-order tensor called the back stress (a.k.a. internal stress). With this
definition for σ dg, the equivalent (von Mises) dislocation glide stress is

𝜎̃ dg =
√︃

3
2 σ dg : σ dg. (12)

Unlike the pressure solution branch, the dislocation glide branch has a finite size, quasi-static,
yield surface, defined as

g = 𝜎̃ dg – G0 y, (13)

where G0 is a material constant and y is an isotropic hardening variable called the drag stress
that evolves from a positive initial value Y0 to some positive value. By default, G0 = E2×10–10/Y0,
which makes the g = 0 surface typically very small relative to 𝜎̃ dg. The equivalent dislocation
glide strain rate is

¤̃𝜀 dg =


0 for g < 0

G1 exp
�
–G2

𝜃

� �
sinh

�
𝜎̃ dg

y

��G3
for g ≥ 0

, (14)

where Gj are material constants. The g ≥ 0 expression applies for both transient and steady-
state creep, but it is motivated by the Garofalo (1963) steady-state creep expression.

The drag stress y evolves according to the following differential equation,

¤y = Y1

�
Y1
y

�Y2 �
1 – y

ȳ

�
¤̃𝜀 dg, (15)

where

ȳ = 𝜎̄ – b̄

sinh-1

(� ¤̃𝜀 dg

G1 exp (–G2/𝜃)

�1/G3
) (16)

is the drag stress saturation ( ȳ ≥ Y0),

𝜎̄ = Y4 sinh-1
(� ¤̃𝜀 dg

Y3 exp (–G2/𝜃)

�1/Y5
)

(17)

is the equivalent (von Mises) stress saturation, b̄ is the equivalent back stress saturation (dis-
cussed below), and Yj are material parameters.

The back stress has a similar, yet different, set of evolution equations. Following J.-L.
Chaboche (1986), b is decomposed as

b =
2∑︁

j=1
bj , (18)

where b1 is a short range, quickly evolving, back stress and b2 is a long range, slowly evolving,
back stress. Each back stress has an equivalent back stress defined as

b̃j =
√︂

3
2 bj : bj . (19)
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Each back stress begins at Bj0, which must be deviatoric (tr(Bj0) = 0) and is set to the zero
tensor 0 by default. As deformation proceeds, each back stress evolves according to

¤bj = Bj1

 
2
3 ¤εdg –

bj

b̄j

¤̃𝜀 dg
!

, (20)

where

b̄j = Bj2 Bj3 tanh
�
𝜎̄

Bj3

�
(21)

is the j th equivalent back stress saturation and Bjk are material constants. Analogous to Eq. (18),
the equivalent back stresses can be summed as

b̃ =
2∑︁

j=1
b̃j and b̄ =

2∑︁
j=1

b̄j . (22)

All materials parameters should be non-negative to obtain typical material behavior. Fur-
thermore, 1 – Í2

j=1 Bj2 must be non-negative to ensure 𝜎̄ – b̄ in Eq. (16) is positive.

3 Discussion of Model Formulation

This section briefly discusses some salient details of the model formulation. A more thorough
discussion will be published at a later date.

3.1 Lack of Coupling Between Branches

The model assumes that ¤εps and ¤εdg are largely independent processes because pressure so-
lution occurs along the grain boundaries, while dislocation glide occurs inside the grains. One
potential mode of coupling, however, has been experimentally observed for 𝜃 ≥ 75 ◦C: recrys-
tallization by brine-assisted grain boundary migration (Ter Heege et al. 2005). This process
consumes grains with high dislocation density, changes the average grain size, and requires
significant strain (𝜀 vp > 10 %) to be activated. A reduction in dislocation-based hardening could
be implicitly captured by calibrating the model against laboratory experiments that include re-
crystallization, but the model does not attempt to capture the impact of grain size changes on
pressure solution viscoplasticity. Omitting this coupling is likely insignificant in many applica-
tions since 𝜀 vp > 10 % tends to occur close to drifts and caverns, where pressure solution creep
is not the dominant mechanism.

3.2 Pressure Solution Branch

The pressure solution branch consists solely of steady-state deformation, without any harden-
ing (transient strain), for several reasons. According to classical pressure solution theory, the
increase in salt solubility in a brine film, of 0.1 μm thickness, surrounding a grain, of 10 mm size,
due to a 1 MPa increase in 𝜎̃ ps, at 𝜃 = 100 ◦C would produce a negligible transient creep strain
on the order of 10–8 (C. J. Spiers 2021). Non-classical effects, such as pressure solution-based
redistribution of grain boundary stresses, grain coarsening, grain elongation, or other structural
changes to grain boundaries, could perhaps create a hardening effect, but a succinct, quantita-
tive, description of such effects is not known to the author. On the other hand, the existence of
sub-grains corresponding to low stresses in in-situ deformed samples (Carter et al. 1993) and
reverse creep at low stresses (Gharbi et al. 2020) suggest that dislocation glide is active during
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low stress creep, even if dislocation glide does not dominate the steady-state rate. It, therefore,
seems reasonable to assume dislocation glide creep dominates transient creep at low stresses,
while pressure solution creep dominates steady-state creep at low stresses.

3.3 Dislocation Glide Branch

Although the dislocation glide branch is largely phenomenological, some loose physical mean-
ing can be attached to the back stresses and drag stress. The back stresses represent harden-
ing due to heterogenously distributed dislocation substructures, such as sub-grains and wavy
slip bands produced by dislocation climb and cross-slip, respectively (Carter et al. 1993). These
substructures are commonly observed at low to medium strain rates (10–12 ≤ ¤̃𝜀 vp ≤ 10–8 1/s)
and low to high temperatures (20 ≤ 𝜃 ≤ 700◦C). The drag stress represents hardening due to
more uniform dislocation distributions, as are observed at higher strain rates (Raj et al. 1989).

The motivation behind the name “drag stress” can be seen by inverting the g ≥ 0 case in
Eq. (14) as

𝜎̃ dg = y sinh-1
(� ¤̃𝜀 dg

G1 exp (–G2/𝜃)

�1/G3
)

, (23)

in which 𝜎̃ dg is equal to y multiplied by a non-linear function of ¤̃𝜀 dg. Thus, y plays a role similar
to an evolving dashpot in rheological models.

Another important observation is the stresses σ dg, and b are co-axial along proportional
stress paths, such that Eqs. (11) and (12) can be simplified to

𝜎̃ = b̃ + 𝜎̃ dg, (24)

where 𝜎̃ =
√︃

3
2 σ dev : σ dev. Eq. (24) can be seen as decomposing 𝜎̃ into a back stress contribu-

tion b̃ and a drag stress contribution 𝜎̃ dg (see Eq. (23)) when ¤̃𝜀 dg is controlled, as approximately
occurs in a constant strain rate test.

Both hardening evolution equations (Eqs. (15) and (20)) conform to the Bailey-Orowan con-
cept, in which the hardening rate is the result of a competition between a strain hardening term
and a strain (a.k.a. dynamic) recovery term. Hardening saturates when the hardening and re-
covery rates balance one another ( ¤y = 0 and ¤bj = 0). At hardening saturation, b̃j = b̄j , y = ȳ, the
stresses σ dg and b are co-axial (even for non-proportional stress paths), such that Eqs. (14),
(16), (17) and (24) combine to give 𝜎̃ = 𝜎̄. Inverting the expression for 𝜎̄ in Eq. (17) results in
the Garofalo (1963) steady-state dislocation glide strain rate expression:

¤̃𝜀 dg = Y3 exp
�
–G2

𝜃

� �
sinh

�
𝜎̄

Y4

��Y5
. (25)

One can rearrange Eq. (16) into a form similar to Eq. (24) as

𝜎̄ = b̄ + 𝜎̄ dg, (26)

which shows that one must decide how to partition the hardening saturation between back
stress and drag stress contributions. The hyperbolic tangent in Eq. (21) assumes back stress
contributions dominate at low stresses (low strain rates) and drag stress contributions dominate
at high stresses (high strain rates). This critical premise is based on direct measurements of
the back stress in single phase metals (Takeuchi et al. 1976, Figure 15), the microstructural
observations at the start of this sub-section, and the study discussed in Section 5.

5/12



Utrecht 2022

4 Calibration

This section reviews four model calibrations against damage-free axisymmetric compression
tests on salt from the Waste Isolation Pilot Plant (WIPP). Attention is focused on calibration
performance rather than the calibration procedure.

Many details of the axisymmetric compression tests on WIPP salt can be found in Salzer
et al. (2015), Düsterloh et al. (2015), and Reedlunn et al. (2022), but some points are reviewed
herein. The specimen grain sizes ranged from 2 to 28 mm, with an arithmetic average of 10
mm. Each test began with a hydrostatic consolidation stage for one to ten days at 20 MPa of
pressure. The logarithmic axial strain and logarithmic inelastic volumetric strains at the end of
the consolidation stage are denoted as 𝜀zz(t0) and 𝜀ie

vol(t0), respectively, while 𝜀zz – 𝜀zz(t0) and
𝜀ie

vol – 𝜀ie
vol(t0) are the strain changes thereafter. Each constant stress test involved two non-

zero 𝜎̄ stages. The first creep stage was designed to approach the steady-state strain rate
from “above”, while the second creep stage was meant to approach the steady-state strain rate
from “below”, as discussed in Günther et al. (2015). In the constant strain rate tests, the axial
engineering strain rate ¤ezz was held fixed, not the axial logarithmic strain rate ¤𝜀zz = ¤ezz/(1 –
ezz), so care was taken to convert between the two strain rate measures as needed. After
the consolidation stage, the radial confining pressure was held at 𝜎rr = 10 or 20 MPa to avoid
significant micro-cracking. Despite these confining pressures, some samples still developed
significant micro-cracks towards the end of the test, judging by 𝜀ie

vol –𝜀ie
vol(t0). Consequently, only

stress–strain curve segments corresponding to 𝜀ie
vol – 𝜀ie

vol(t0) ≥ 0 (compressive inelastic volume
strain) were treated as micro-crack-free and suitable for model calibration. One exception to
this rule was made to compute the saturation stress 𝜎̄ from test A_TUC_TC98, as noted below.
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Figure 1: Model behavior at hardening saturation (steady-state).
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The experimental measurements in Fig. 1a were derived from measuring the steady-state
strain rate in constant stress experiments and the saturation stress in two constant strain rate ex-
periments, all with 𝜎rr = 20 MPa. In the faster constant strain rate test, A_TUC_TC98, the max-
imum stress of 75.2 MPa corresponded to 𝜀zz – 𝜀zz(t0) = 42.2 % and 𝜀ie

vol – 𝜀ie
vol(t0) = –0.8 %. As

micro-cracking likely affected this maximum stress, the stress–strain slope at the onset of expan-
sion (𝜀ie

vol –𝜀ie
vol(t0) < 0) was linearly extended to 𝜀zz –𝜀zz(t0) = 42.2 %, resulting in 86.8 MPa, and

a micro-crack-free saturation stress was roughly estimated as 𝜎̄ = (75.2 + 86.8)/2 = 81.0 MPa.
The logarithmic scale in Fig. 1a makes a 75.2 to 86.8 MPa uncertainty virtually negligible, so
81.0 MPa was treated as a reliable data point.

Several calibration decisions were made in the absence of specific recent experimental mea-
surements on WIPP salt. (1) The thermoelastic parameters in Table 1 were inherited from Mun-
son et al. (1989). (2) The parameter G1 was set to 109 1/s. (3) The initial drag stress was set
to Y0 = 1.0 MPa, since preliminary simulations showed the model’s response was insensitive
to Y0 when 𝜎̃ > 2 Y0. (4) Back stress hardening prior to testing was neglected (Bj0 = 0). (5)
The parameter P2 was set to 2950 K, based on the granular salt compaction experiments in
C. Spiers et al. (1990). (6) The calibrations focused on the 20 ≤ 𝜃 ≤ 60◦C temperature range.

With the parameters G1 and P2 selected, the strain rate saturation parameters P1, G2, Y3,
Y4, and Y5 were optimized, in a least squares sense, against the steady-state strain rate mea-
surements. The resulting fits are shown in Fig. 1a and the parameter values are listed in Table 1.
All four model calibrations utilize the same steady-state strain rate calibration.

The hardening parameters were fit against the strain vs. time curves from the first stage
of the constant stress tests and the stress vs. strain curves from the damage-free portions of
the constant strain rate tests. The fitting process minimized a merit function that compared
simulations against experimental measurements in an integrated least-squares sense. The
resulting parameter sets are listed in Table 1. The performance of each hardening calibration is
shown in Figs. 2 and 3. Figure 2a depicts the transient creep strain 𝜀 tr(t1) after t1 ≈ 50 days of
creep at various applied stresses and two temperatures. (The transient strain 𝜀 tr = 𝜀 tr(t) is 𝜀zz
minus the elastic and accumulated steady-state creep strain.) Fig. 2b depicts the characteristic
creep time tch, which is the time for 𝜀 tr to reach 0.8 𝜀 tr(t1). Each simulated curve, for a given
temperature, in Fig. 2 was derived from one hundred individual constant stress simulations.
Each constant stress simulation utilized a different 𝜎̄, ranging from 1 to 100 MPa. Values of
𝜀 tr(t1) and tch were extracted from each simulated strain history in the same manner as the
experiments. Note that salt tends to approach steady-state creep in less time when tested at
higher temperatures and stresses than at lower temperatures and stresses, so, by focusing on a
fixed time, Fig. 2 plots the transient behavior at various degrees of proximity to true steady-state
creep. Although one should be cautious about comparing the transient behavior at different
stresses and temperatures in Fig. 2, one can still directly compare experimental measurements
and simulations at a given stress and temperature. Finally, the plots in Fig. 3 show the stress vs.
strain curves for constant strain rate experiments and simulations at three different engineering
strain rates. Only the 𝜀ie

vol – 𝜀ie
vol(t0) ≥ 0 portions of the experimental measurements are shown,

which is why some measured responses abruptly terminate.
Calibration 1A1 optimized G3, Y1, and Y2 against the first-stage constant stress tests with

10 ≤ 𝜎̃ ≤ 18 MPa. The Calibration 1A1 simulations of constant stress tests produce 𝜀 tr(t1)
and tch values that agree with the experimental measurements (see Figs. 2a and 2b) within
the calibration range, but not outside the calibration range. The constant stress simulations at
𝜎̃ ≤ 6 MPa under-predict the 𝜀 tr(t1) values (see Fig. 2a), and the constant strain rate simulations
substantially under-predict the stresses for 𝜀zz – 𝜀zz(t0) > 1 % at all three strain rates (see
Fig. 3a). This latter under-prediction is especially problematic because a model that cannot
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Figure 2: Transient strains and characteristic times from constant stress simulations compared
against experimental measurements (first constant stress stage only).
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Figure 3: Stress–strain curves from room temperature constant strain rate simulations from
Calibration 1A1 and 1C compared against experimental measurements. (Constant strain rate
simulation results for Calibrations 1A2 and 1B were similar to the Calibration 1C results in (b).)
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capture damage-free constant strain rate behavior cannot be used to infer the degree of damage
in low confining pressure constant strain rate tests.

Calibration 1A2, by contrast, optimized G3, Y1, and Y2 against the constant strain rate tests
with 10–6 ≤ ¤ezz ≤ 10–4 1/s. The back stress evolution rates were again set to zero (Bj1 = 0).
The Calibration 1A2 simulations produced stress–strain responses similar to the Calibration
1C responses shown in Fig. 3b as desired, but simulations of the constant stress tests at 𝜎̃ <
16 MPa substantially over-predicted 𝜀 tr(t1) (see Fig. 2a).

Calibration 1B fit G3, Y1, Y2, B21, B22, and B23 against the first-stage constant stress tests
with 10 ≤ 𝜎̃ ≤ 18 MPa and the constant strain rate tests with 10–6 ≤ ¤ezz ≤ 10–4 1/s. The short
range back stress evolution rate was set to zero (B11 = 0). Calibration 1B captured the measured
𝜀 tr(t1) and tch values for 10 ≤ 𝜎̃ ≤ 18 MPa (see Figs. 2a and 2b), and the Calibration 1B stress-
strain curves were similar to the Calibration 1C curves (see Fig. 3b). Outside of the calibration
range, Calibration 1B reasonably predicted the 𝜀 tr(t1) values for 4 ≤ 𝜎̃ ≤ 8 MPa, but under-
predicted the tch measurements by roughly 100× in the same stress range.

Calibration 1C fit G3, Y1, Y2, B11, B13, B21, B22, and B23 against the first-stage constant
stress tests with 4 ≤ 𝜎̃ ≤ 18 MPa and the constant strain rate tests with 10–6 ≤ ¤ezz ≤ 10–4 1/s.
Preliminary optimizations that allowed both B12 and B22 to vary produced B12 + B22 ≈ 0.999
(recall B12+B22 > 1 is prohibited), so B12 = 1–B22 was simply enforced for the final Calibration 1C
optimization. This most flexible model calibration produced behaviors similar to Calibration 1B,
except it more accurately captured the tch measurements at 4 ≤ 𝜎̃ ≤ 8 MPa (see Fig. 2b).

The relative contributions of the back stresses and drag stress at hardening saturation can
be seen in Fig. 1b for each of the calibrations. Calibrations 1A1 and 1A2 do not include back
stresses, so the drag stress contribution 𝜎̄dg dominates at all applied stresses and strain rates.
Calibrations 1B and 1C, however, conform to the assumption discussed at the end of Sec-
tion 3.3: b̄ dominates at low stresses and 𝜎̄dg dominates at high stresses.

Table 1: Calibrations (All calibrations utilize the default values of G0 = E2×10–10/Y0 and Bj0 = 0.)

Type Parameter Units Cal 1A1 Cal 1A2 Cal 1B Cal 1C

Thermo-
elastic

E1 Pa 20.67 × 109 20.67 × 109 20.67 × 109 20.67 × 109

E2 Pa 12.40 × 109 12.40 × 109 12.40 × 109 12.40 × 109

A 1/K 45 × 10–6 45 × 10–6 45 × 10–6 45 × 10–6

Pressure
Solution

P1 K/(Pa s) 16.39 × 10–12 16.39 × 10–12 16.39 × 10–12 16.39 × 10–12

P2 K 2.950 × 103 2.950 × 103 2.950 × 103 2.950 × 103

Dislocation
Glide

G1 1/s 1 × 109 1 × 109 1 × 109 1 × 109

G2 K 5.585 × 103 5.585 × 103 5.585 × 103 5.585 × 103

G3 – 22.03 14.12 8.543 7.973
Y0 Pa 1 × 106 1 × 106 1 × 106 1 × 106

Y1 Pa 86.08 × 106 221.6 × 106 451.6 × 106 496.7 × 106

Y2 – 4.240 2.138 1.035 0.9911
Y3 1/s 36.00 36.00 36.00 36.00
Y4 Pa 43.50 × 106 43.50 × 106 43.50 × 106 43.50 × 106

Y5 – 5.623 5.623 5.623 5.623
B11 Pa 0 0 0 84.63 × 109

B12 – 1 × 10–9 1 × 10–9 1 × 10–9 0.2910
B13 Pa 1 × 109 1 × 109 1 × 109 18.60 × 106

B21 Pa 0 0 8.303 × 109 5.445 × 109

B22 – 1 × 10–9 1 × 10–9 0.9420 0.7090
B23 Pa 1 × 109 1 × 109 12.98 × 106 11.29 × 106
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5 Partial Validation

The previous section demonstrated how the drag stress and two back stresses can be used
to capture salt’s damage-free behavior at different stresses and strain rates. All the calibra-
tion experiments, however, involved monotonic proportional stress paths. This section com-
pares model calibrations 1A2, 1B, and 1C against a constant strain rate experiment with a
non-monotonic proportional stress path. Such loading direction reversals lead to a temporary
reduction in flow strength known as the Bauschinger effect. This effect is frequently attributed to
microstructural residual stresses associated with heterogenous dislocation distributions, such
as sub-grains (see Mughrabi (1983, Fig. 4)).
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−40

−30
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εzz − εzz(t0) (%)

Figure 4: A comparison of three different model calibration stress–strain responses against
experimental measurements on artificial rock salt.

The Bauschinger effect has not been studied on WIPP salt, so an experiment on artificial
rock salt (Aubertin, Julien, et al. 1999, Fig. 5d) was utilized instead. Fig. 4 displays the artificial
rock salt stress–strain response at | ¤𝜀zz| = 3.5 × 10–5 1/s, 𝜎rr = 53 MPa, and 𝜃 = 20 ◦C, during
three stages: axisymmetric compression, axisymmetric extension, and a second axisymmetric
compression stage∗. This artificial rock salt experiment was simulated using slightly modified
versions of Calibration 1A2, 1B, and 1C. The elastic moduli E1 and E2 were both reduced by a
factor of 22.5/31.0 = 0.7258 to properly capture the artificial rock salt’s linear elastic behavior,
as reported by Aubertin, Yahya, et al. (1999). In addition, the simulated stress difference 𝜎̆ =
𝜎zz – 𝜎rr values were scaled by 0.92× to bring the WIPP salt derived predictions more in-line
with the artificial salt measurements during the first axisymmetric compression stage.

Fig. 4 also compares the simulated stress–strain responses against the experimental mea-
surements. The (scaled) 𝜎̆ from Calibration 1A2, which includes only drag stress hardening,
matches the experimental measurements nearly exactly during the first axisymmetric compres-
sion stage, but fails to capture the Bauschinger effect during the axisymmetric extension and

∗To enhance legibility, brief elastic unloading and reloading stages in the actual experiment were omitted, and
the measured stress and strain were each multiplied by –1 to cause the first stage to be axisymmetric compression
rather than axisymmetric extension.
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second axisymmetric compression stages. Adding one back stress in Calibration 1B produces
a prediction that qualitatively represents the Bauschinger effect, but the prediction is not quite
stiff enough at the onset of hardening and re-hardening. Adding a second kinematic hardening
back stress causes Calibration 1C to accurately represent the initial hardening during the first
axisymmetric compression stage, accurately predict the re-hardening during the axisymmetric
extension stage, and come closer to predicting the re-hardening during the second axisymmet-
ric compression stage.

This prediction of the Bauschinger effect is significant because the Calibration 1C back
stress was not calibrated against tests with non-monotonic loading, as is often done. Instead,
the back stress parameters Bij were calibrated against monotonic loading tests, such that the
back stress dominated at low strain rates (low stresses) and played a lesser, yet significant, role
at high strain rates (high stresses) (see Fig. 1b). The successful prediction of the Bauschinger
effect by Calibration 1C, therefore, validates the hyperbolic tangent in Eq. (21).

Although not shown herein, the model can also represent reverse creep during a multi-
stage constant stress experiment. During forward creep at an applied 𝜎̃, b̃ evolves to some
value b̃ < 𝜎̃. Subsequently decreasing 𝜎̃ to 𝜎̃ < b̃ produces reverse creep (see Eq. (10)).

6 Summary

A new model for the thermo-viscoplastic behavior of damage-free rock salt has been devel-
oped, calibrated, and partially validated. The pressure solution branch captured salt’s steady-
state behavior at low stresses. The dislocation glide branch captured WIPP salt’s transient
behavior at low stresses, and all observed viscoplastic behavior at medium to high stresses.
After calibrating the model against monotonic experiments, the model successfully predicted
the Bauschinger effect in a non-monotonic experiment. This result validates a key assumption
in the model: the back stress dominates at low strain rates (low stresses) and the drag stress
dominates at high strain rates (high stresses). Future work will likely focus on adding damage
and healing to the model.

Acknowledgements

The author gratefully acknowledges the assistance of his Sandia colleagues, his Joint Project WEIMOS colleagues,
and Christopher Spiers. Sandia National Laboratories is a multi-mission laboratory managed and operated by Na-
tional Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the
U.S. Department of Energy. This paper describes objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

References

Aubertin, M., Julien, M. R., Servant, S., and Gill, D. E. (1999). A rate-dependent model for
the ductile behavior of salt rocks. Canadian Geotechnical Journal, 36, 4, 660–674.

Aubertin, M., Yahya, O. M. L., and Julien, M. (1999). Modeling mixed hardening of alkali
halides with a modified version of an internal state variables model. International Journal of
Plasticity, 15, 10, 1067–1088.

Carter, N., Horseman, S., Russell, J., and Handin, J. (1993). Rheology of rocksalt. Journal
of Structural Geology, 15, 9-10, 1257–1271.

11/12



Utrecht 2022

Chaboche, J.-L. (1986). Time-independent constitutive theories for cyclic plasticity. Interna-
tional Journal of plasticity, 2, 2, 149–188.

Chaboche, J. (2008). A review of some plasticity and viscoplasticity constitutive theories. Inter-
national Journal of Plasticity, 24, 10, 1642–1693.

Düsterloh, U., Herchen, K., Lux, K.-H., Salzer, K., Günther, R.-M., Minkley, W., Hampel,
A., Argüello Jr, J. G., and Hansen, F. D. (2015). Joint Project III on the comparison of
constitutive models for the thermomechanical behavior of rock salt. III. Extensive laboratory
test program with argillaceous salt from WIPP and comparison of test results. Proc. 8th
Conference on the Mechanical Behavior of Salt, 13–21.

Garofalo, F. (1963). An empirical relation defining the stress dependence of minimum creep
rate in metals. Trans. AIME, 227, 351–356.

Gharbi, H., Bérest, P., Blanco-Martín, L., and Brouard, B. (Oct. 2020). Determining upper
and lower bounds for steady state strain rate during a creep test on a salt sample. Interna-
tional Journal of Rock Mechanics and Mining Sciences, 134, 104452.

Günther, R.-M., Salzer, K., Popp, T., and Lüdeling, C. (2015). Steady-state creep of rock
salt: improved approaches for lab determination and modelling. Rock Mechanics and Rock
Engineering, 48, 6, 2603–2613.

Mughrabi, H. (1983). Dislocation wall and cell structures and long-range internal stresses in
deformed metal crystals. Acta metallurgica, 31, 9, 1367–1379.

Munson, D. E., Fossum, A. F., and Senseny, P. E. (1989). Advances in resolution of discrep-
ancies between predicted and measured in situ WIPP room closures. Tech. rep. SAND88-
2948, Albuquerque, NM, USA: Sandia National Laboratories.

Raj, S. V. and Pharr, G. (1989). Creep substructure formation in sodium chloride single crystals
in the power law and exponential creep regimes. Materials Science and Engineering: A, 122,
2, 233–242.

Reedlunn, B., Argüello, J. G., and Hansen, F. D. (2022). A Reinvestigation into Munson’s
Model for Room Closure in Bedded Rock Salt. International Journal of Rock Mechanics and
Mining Sciences, 151, doi: 10.1016/j.ijrmms.2021.105007.

Salzer, K., Günther, R.-M., Minkley, W., Naumann, D., Popp, T., Hampel, A., Lux, K.-H.,
Herchen, K., Düsterloh, U., Argüello Jr, J. G., and Hansen, F. D. (2015). Joint Project
III on the comparison of constitutive models for the thermomechanical behavior of rock salt.
II. Extensive laboratory test program with clean salt from WIPP. Proc. 8th Conference on
the Mechanical Behavior of Salt, 3–12.

Spiers, C. J. (2021). Negligible transient strain due to pressure solution. Personal Communi-
cation.

Spiers, C., Schutjens, P., Brzesowsky, R., Peach, C., Liezenberg, J., and Zwart, H. (1990).
Experimental determination of constitutive parameters governing creep of rocksalt by pres-
sure solution. Geological Society, London, Special Publications, 54, 1, 215–227.

Takeuchi, S. and Argon, A. (1976). Steady-state creep of single-phase crystalline matter at
high temperature. Journal of Materials Science, 11, 8, 1542–1566.

Ter Heege, J., De Bresser, J., and Spiers, C. (2005). Dynamic recrystallization of wet syn-
thetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature
and strain. Tectonophysics, 396, 1-2, 35–57.

12/12

https://doi.org/10.1016/j.ijrmms.2021.105007

	Introduction
	Model Formulation
	Discussion of Model Formulation
	Lack of Coupling Between Branches
	Pressure Solution Branch
	Dislocation Glide Branch

	Calibration
	Partial Validation
	Summary

