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Motivation: SCC Risk of Spent Fuel Dry Storage Canisters

U.S. Indepandent Spont Fuel Storage Installations (1SFSI)
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Assessing Risk: Empirical/Probabilistic Approach

At what rate and to what extent will corrosion damage propagate?
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limited prediction capability, mechanistic insight lacking; development of
realistic accelerated tests and predictive models is a grand challenge
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Opening the Black Box: A Deterministic Approach
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Foundational challenge inhibiting fundamental understanding is the
limited ability to directly probe surface environment and corrosion
processes



Integrated Deterministic/Probabilistic
Model Concept for Canister SCC

| Evolving Canister Environmental Conditions:RH, T, Salt Chemistry, Salt Load p)

Crack
Penetration

Pit Initiation
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Sea Salt Brine Chemistry and Properties f(RH,T)
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Higher Chloride (lower humidity) Increases Pitting Susceptibility

05 }
04f- | 1.0
O 23C,exp

u_;l- 03 08'
}m T )
e . 0.6-
w02+ — w
5 L
= n 0.4-
2 0 - o
& =
o L 0.2-
= 00f .
o 0.0+

-0 304 - 316L

'02 ] | | |
-02 [ | | . 0.0001 0.001 0.01 0.1 1 10
00 10 0?2 103 1wt aci

[cl™ 1, ppm

FIGURE 1. Pitting potential vs log C/- concentration in aerated
solutions at various temperatures.
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Lower Humidity (higher chloride) increases SCC Susceptibility

100
90 ¢SCC RH_;; = f(T, salt, material) .-
a0l | oNosCC \
!i 70 Too diluted solution o O 7 i Py
= to lead to SCC at o
-'E 60+ given temperalure L
= ’.—'f
2 50 o j}; e o @
o »
S 40 scc
T 30|06 e e e .
o B
2{:' N Py - et RS = *
g DP = f(T,salt) R
10 Deposits insoluble M
{J f Li ] T i

0O 10 20 30 40 50 60 70 80
Temperature (°C)

FIGURE 14. Schematic presentation of RH limits for SCC initiation.
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Pitting Kinetics and Damage Distributions: Baseline Data
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Pit size and frequency on 304H reach limiting
values; 40% RH produces larger pits
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Maximum Pit Size Model: Deterministic Approach

Electrochemical model for predicting
maximum pit size possible for a given
material and environmental condition

Model Inputs:
salt chemistry, salt load, RH, T, alloy

Challenge:
Information on electrochemical parameters
lacking for expected canister brine conditions

Assumptions:

1. Continuous and uniform brine film

2. Hemispherical pits

3. Cathodic and anodic kinetics are time
independent (fixed electrolyte conditions)
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Several Humidity-Dependent Brine Characteristics

Control Pit Growth
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Something Unexpected: Pit Morphology f(RH)

10um

Hemispherical Pits, Assumed Irregular Pits
and Cracks,
Unexpected

: “?15“@=
cross-section
through cracked

region

What is going on here?

Weirich, T.D., Srinivasan, J., Locke, J.S., .... Schindelholz, E.J., J. Electrochem. Soc. 166 (2019): C3477-C3487

14



Low Humidity (40% RH) Produces Irregular Pits
Reflective of Surface Condition

EBSD maps of cross-section
through 304 SS coupon surface

Weirich, T.D., Srinivasan, J., Locke, J.S., .... Schindelholz, E.J., J. Electrochem. Soc. 166 (2019): C3477-C3487

15



Irregular Pit Morphology at Low RH Near Critical Pit Stability?
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Fig. 1. Anodic polarization curve of metal showing potential regions for polishing state and
active state pitting. E=e¢lectrode potential; /=metal dissolution current; Ep;, =the pitting
potential; £, =the passivation—depassivation potential.
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Potential (Vgcg)

Precipitation of Mg Species May Limit Cathodic
Supply and Promote HER in Low Humidity Brines
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To What Extent does Low RH Sea Salt Brine Diminish Cathode
Power and Embrittle Pit Area?
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To What Extent do Low Humidity Precipitation Reactions Dry

Out Brine and Limit Corrosion?

« Cathodic reactions produce

hydroxides promoting Mg
precipitates

Corrosion products sequester Cl-
from the brine

Precipitation removes brine
components, reducing brine volume
at a given RH
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Brine Evolution is a Critical Factor Controlling
Corrosion Kinetics and Damage Distributions

Aluminium: trapped sodium

stops further degradation
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Broader Implications for Electrochemical
Atmospheric Corrosion Models

Variety of Assumptions
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Conclusions

Pitting and SCC are promoted by low humidity conditions in the presence of sea
salt deposits.

Why?
e Shift in brine conditions — high volume of Na-Cl rich brine at high humidity
to low volume of more concentrated Mg-Cl rich brines below ~ 75 % RH

* High [CI-] can promote pitting — anodic processes are well studied

e Concentrated Mg-Cl rich brines lead to irregular/jagged pits and microcracks in
rough finish SS 304 that could promote SCC - limit cathode power and support
HER?

Elucidating the relationship between evolving brine characteristics and the
cathodic processes driving atmospheric corrosion and SCC would further the
development of deterministic electrochemical models.



