

Sandia
National
Laboratories

Interatomic Potentials for Materials Science and Beyond; Advances in Machine Learned Spectral Neighborhood Analysis Potentials

Mitchell Wood, Mary Alice Cusentino, Aidan Thompson
Sandia National Labs, Albuquerque, New Mexico,

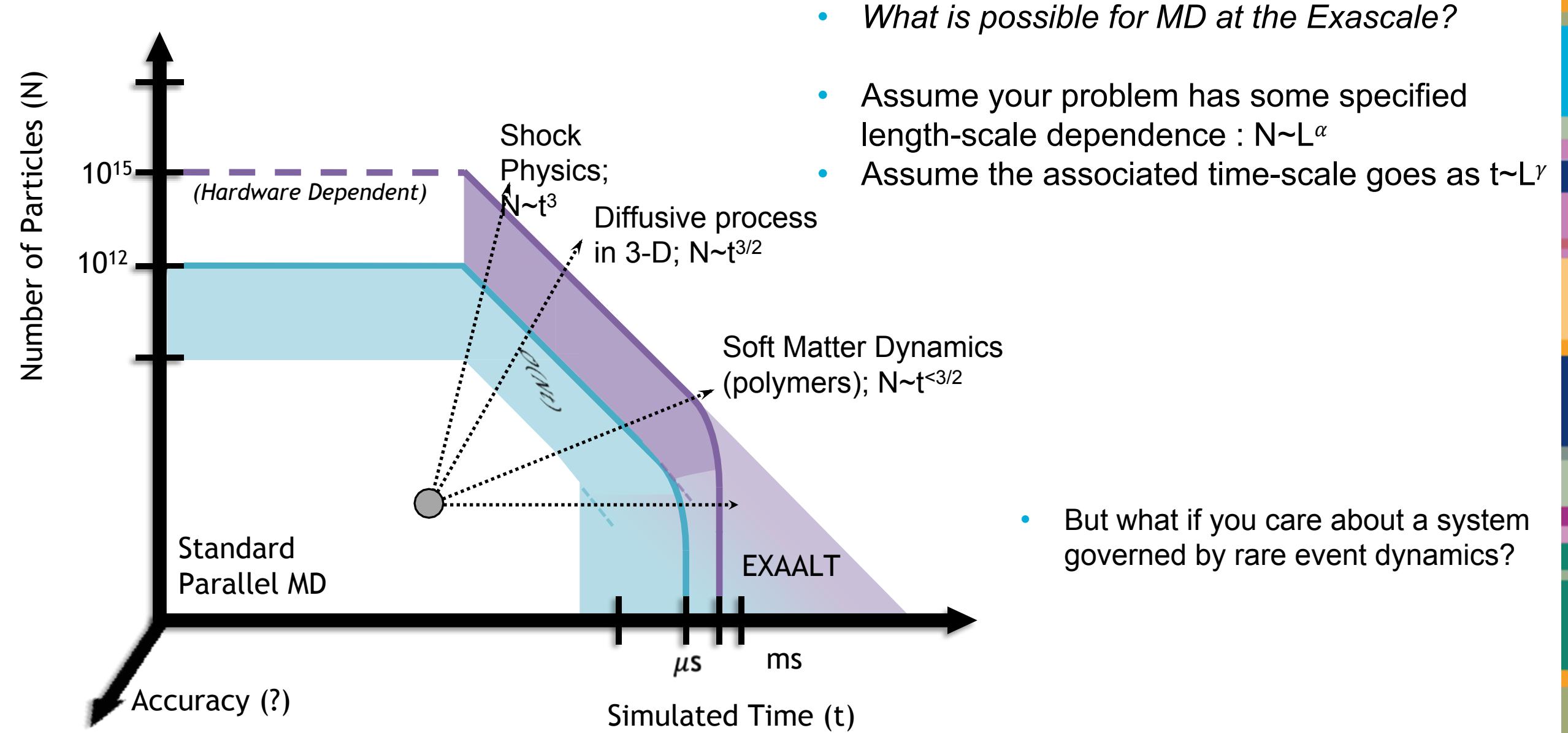
USA

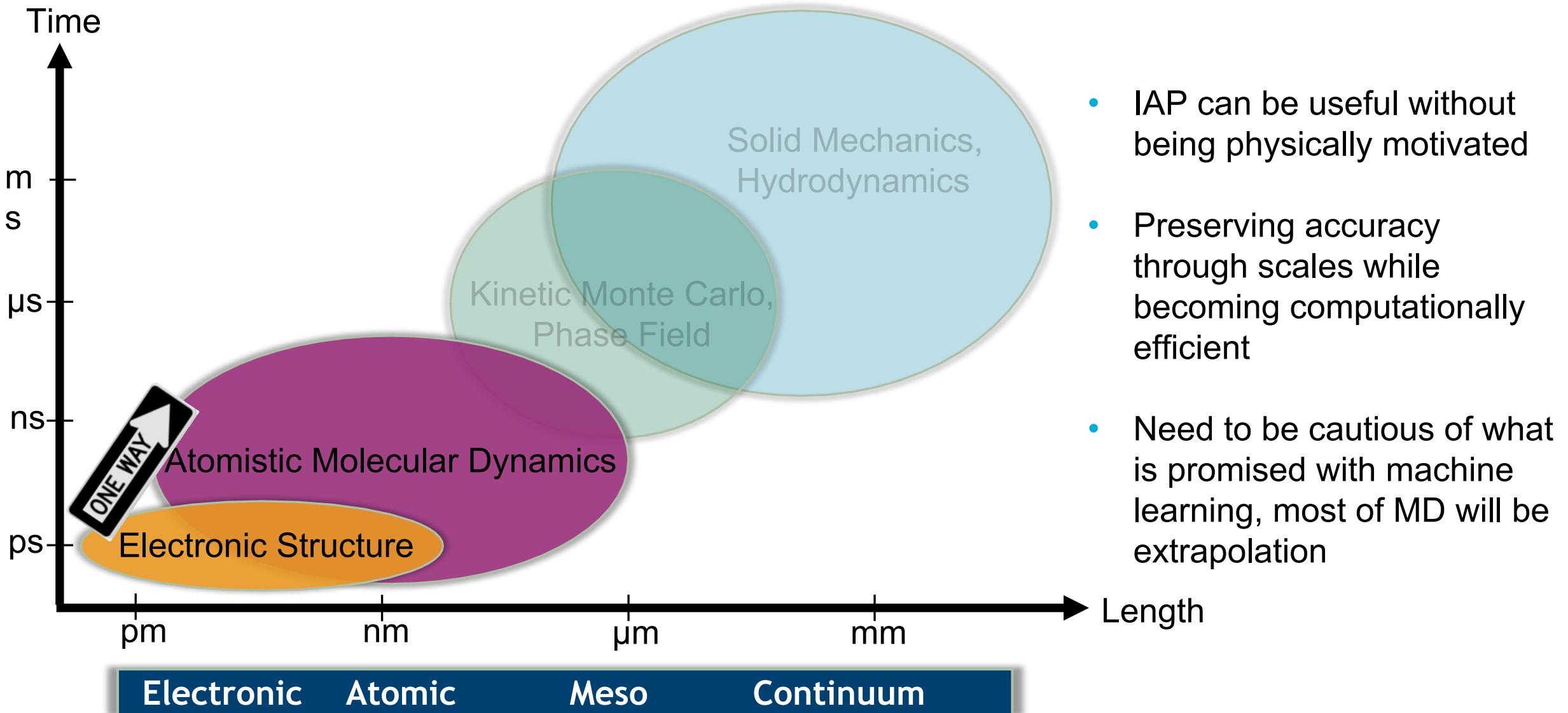
Ivan Oleynik

University of South Florida, Tampa, Florida, USA

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

The Master Plot





Environment of Machine Learning Techniques

Descriptors	Training Technique / Model Form
<ul style="list-style-type: none">• Bond distances, angles [Behler]• Moment tensors [Shapeev]• <u>Bispectrum components [Cysani, Thompson]</u>• Smooth overlap of atomic positions [Cysani]• Atomic cluster expansion [Drautz] <p>...</p>	<ul style="list-style-type: none">• Linear Regression• Stochastic Gradient Descent• Gaussian Process Regression <p>...</p>

Data Needs:

- When $N_{DOF} \sim N_{Train}$, high risk of overfitting → Poor Interpolation
- When training diversity is low → Poor Extrapolation
- Running MD will expose these short comings (energy drift, instabilities, unphysical behavior)

SNAP Applications

SNL Involved, Independent

System	Year	Usage	Origin	N _{Dof}	N _{Training}	Descriptors
Ta	2014	Dislocation motion	SNL, Thompson	31	363	Linear
InP	2015	Radiation damage, defects	SNL, Thompson	31	665	Linear
WBeHe	2017	Plasma facing materials	SNL, Wood	56	25,052	Linear
Mo	2017	Phase diagram prediction	UCSD, Ong	31	1000	Linear
Actinides	2018	Shock, phase transitions	SNL/LLNL	56	20,000	Quadratic
NiMo	2018	Phase diagram prediction	UCSD, Ong	31	2,000	Linear
LiN	2019	Super-Ionic Conductor	UCSD, Ong	31	3,000	Lin+Charge
Various	2020	Accuracy/Cost comparison	UCSD/SNL	10-130	1,000	Lin, Quad
InP	2020	Radiation damage, defects	SNL, Cusentino	241	1,000	EME
AlNbTi	2020	High entropy alloy design	SNL, Tranchida	1596	7,250	Quadratic
Si	2020	Neural network SNAP	UNLV, Zhu	1596	>5,000	NN
AI	2021	Predicting electron density	SNL, Ellis	91	30	NN
Fe	2021	Magnetic phase transition	SNL, Nikolov	1596	683	Quad+Spin

SNAP Applications

SNL Involved, Independent

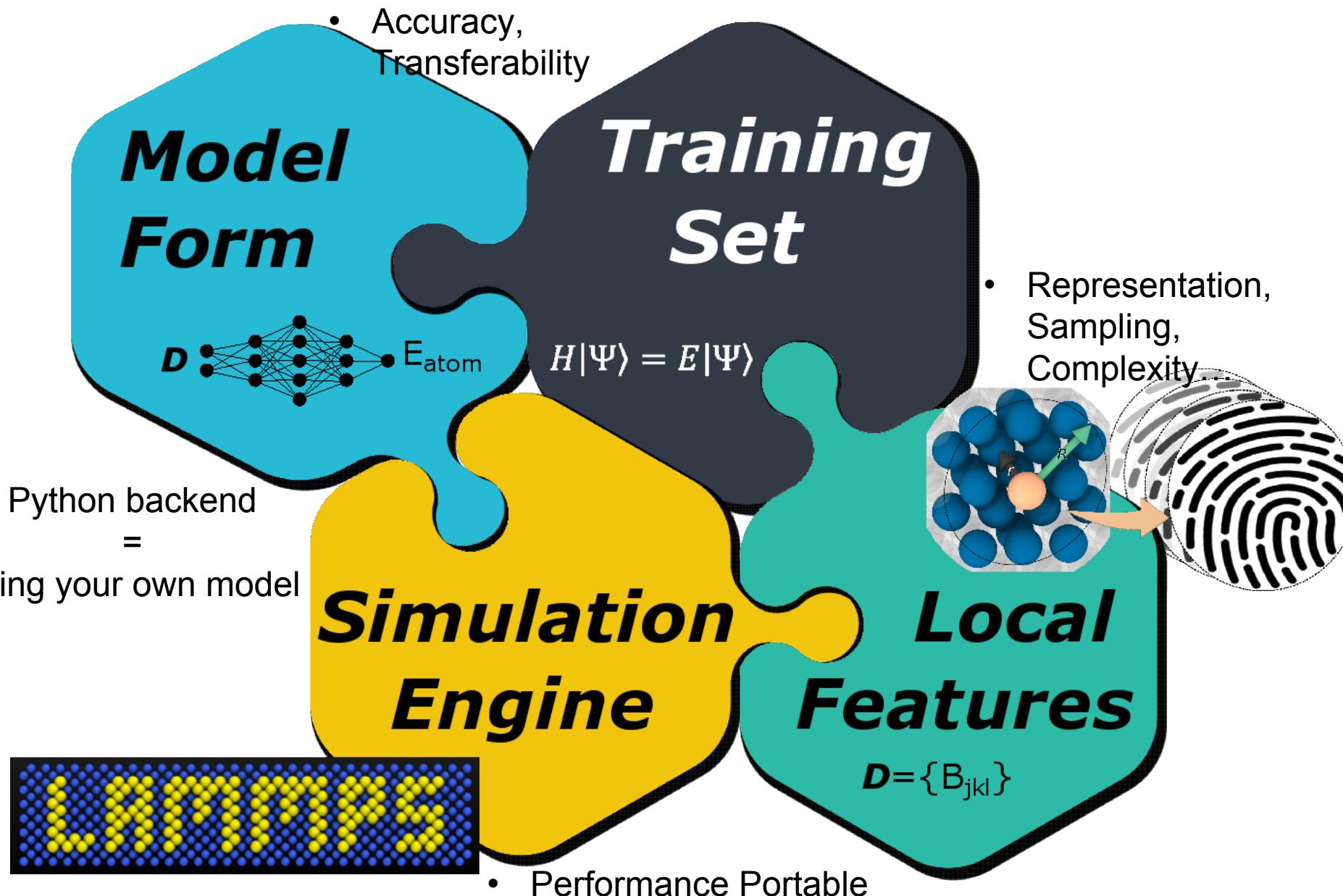
(more in the literature, not an exhaustive list)

System	Year	Usage	Origin	N _{Dof}	N _{Training}	Descriptors
WBeHN	-	Plasma facing materials	SNL, Cusentino	56*	>40,000	Linear
C	-	Planetary impacts, shock	USF, Willman	1596	30,000	Quadratic
C, V	2021	Metal plasmas	SNL, Wood	1596	10,000	Quadratic
MoNbTaT	-	HEA alloy design	SNL, McCarthy	-	>5,000	EME
GeSe	-	Vitrification	UCD, Sievers	-	>5,000	EME
LiMoS	-	Li-ion batteries	UConn, Dongarre	-	>5,000	-
SiGeSnP	-	Thermoelectric materials	GWU, Li	-	>5,000	-
W	-	Model form selection	LANL/SNL	-	330,000	NN

So what should you train a ML-IAP on?

- Growing evidence that SNAP is a *general use* material model form, unlike any interatomic potential used in MD to date
- SNAP model training software now incorporated in [Materials Design Inc.](#) products

How do you recognize failures (poor extrapolation)?



Assembling a Better Training Set

Description	N_E	N_F	σ_E	σ_F
W-Be:				
Elastic Deform [†]	3946	68040	$3 \cdot 10^5$	$2 \cdot 10^3$
Equation of State [†]	1113	39627	$2 \cdot 10^5$	$4 \cdot 10^4$
DFT-MD [†]	3360	497124	$7 \cdot 10^4$	$6 \cdot 10^2$
Surface Adhesion	381	112527	$2 \cdot 10^4$	$9 \cdot 10^4$

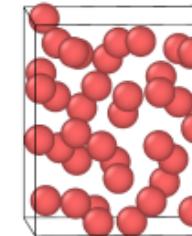
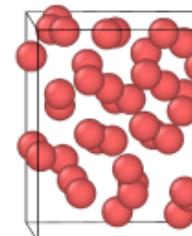
† Multiple crystal phases included in this group:

Domain Expertise Training

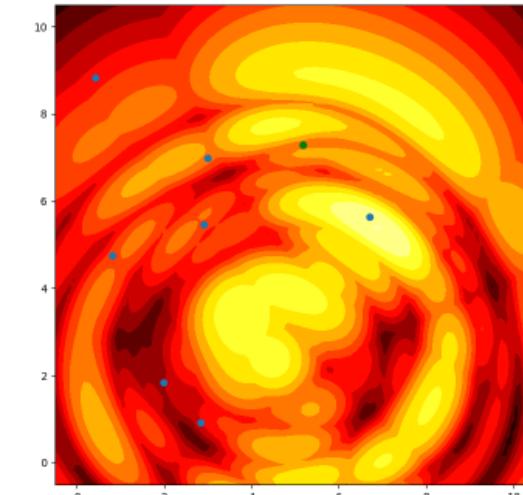
- Use cases for the potential are known, run DFT on representative configurations
- Intrinsically biased to a small region of configuration space

$$V(x) = -H(x, y) \pm S(x)$$

Pseudo-potential



Cross-entropy



Self-entropy

ECP
EXASCALE COMPUTING PROJECT

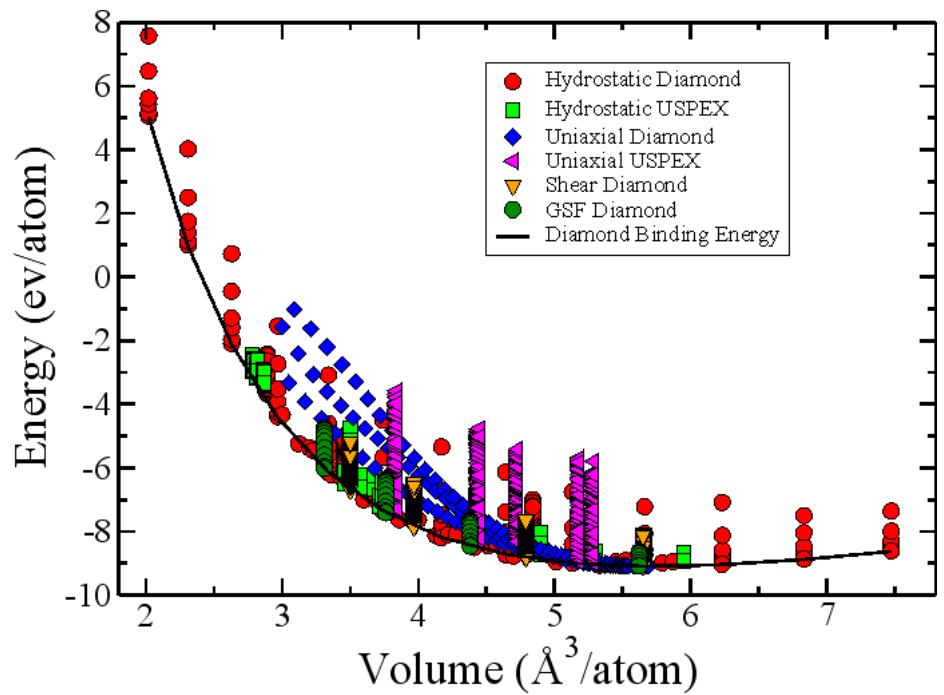
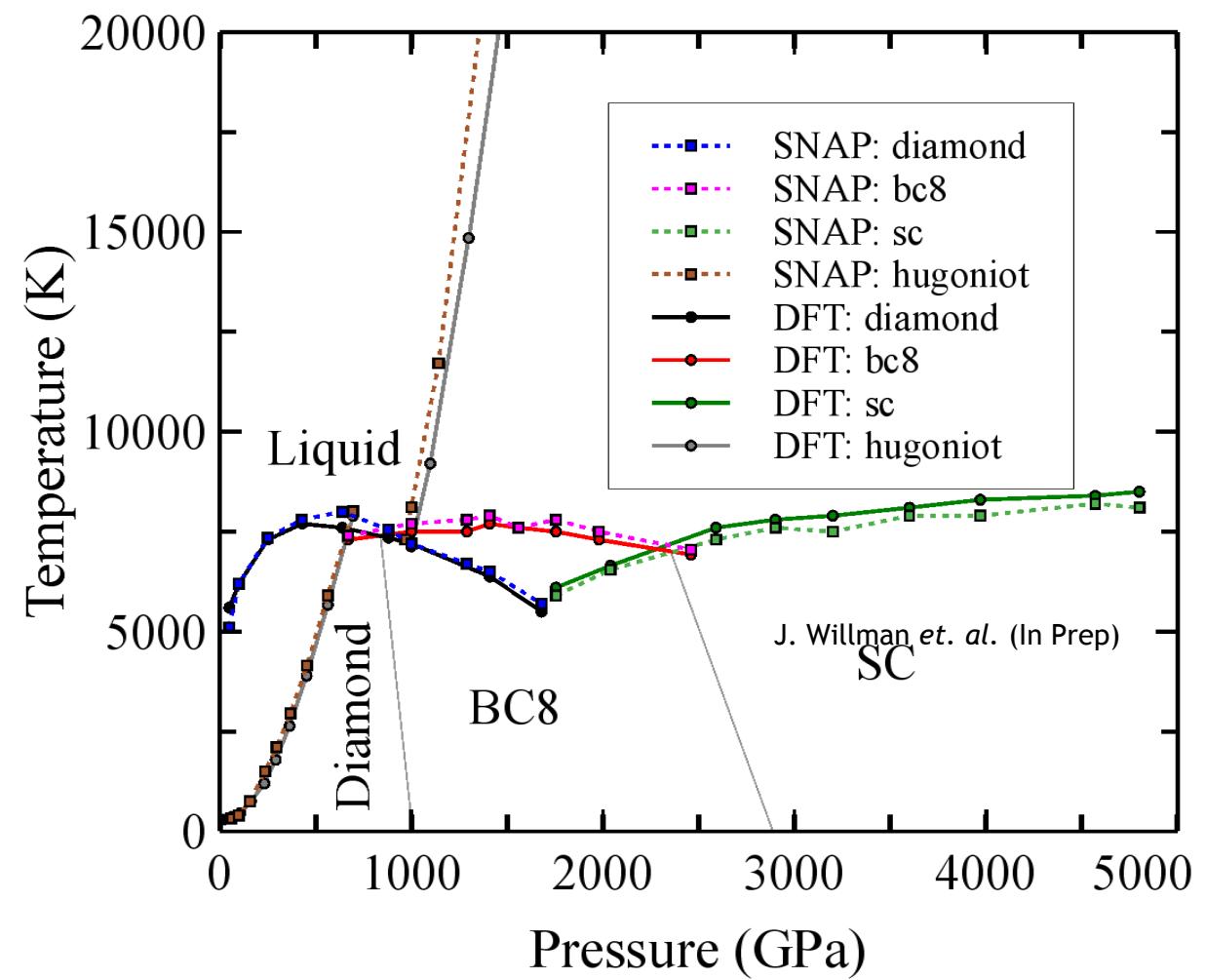
Maximizing Diversity

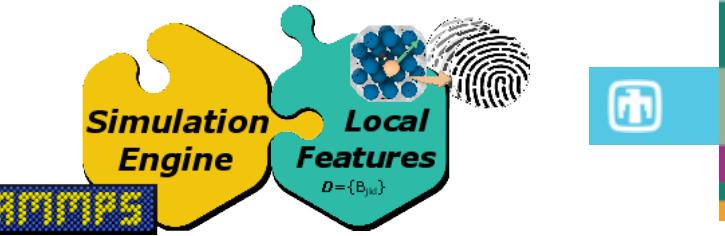
- Framework of time acceleration tools can generate new training by running MD with lots of replicas
- (above) Self-entropy landscape of the average interatomic distance

9 To be or Not to be Transferrable

Simple Model, Complex Descriptor

- A general use IAP is much more challenging to create.
- Phases of Carbon from 0-4TPa, 0-15,000K reproduced because it was trained to do so.

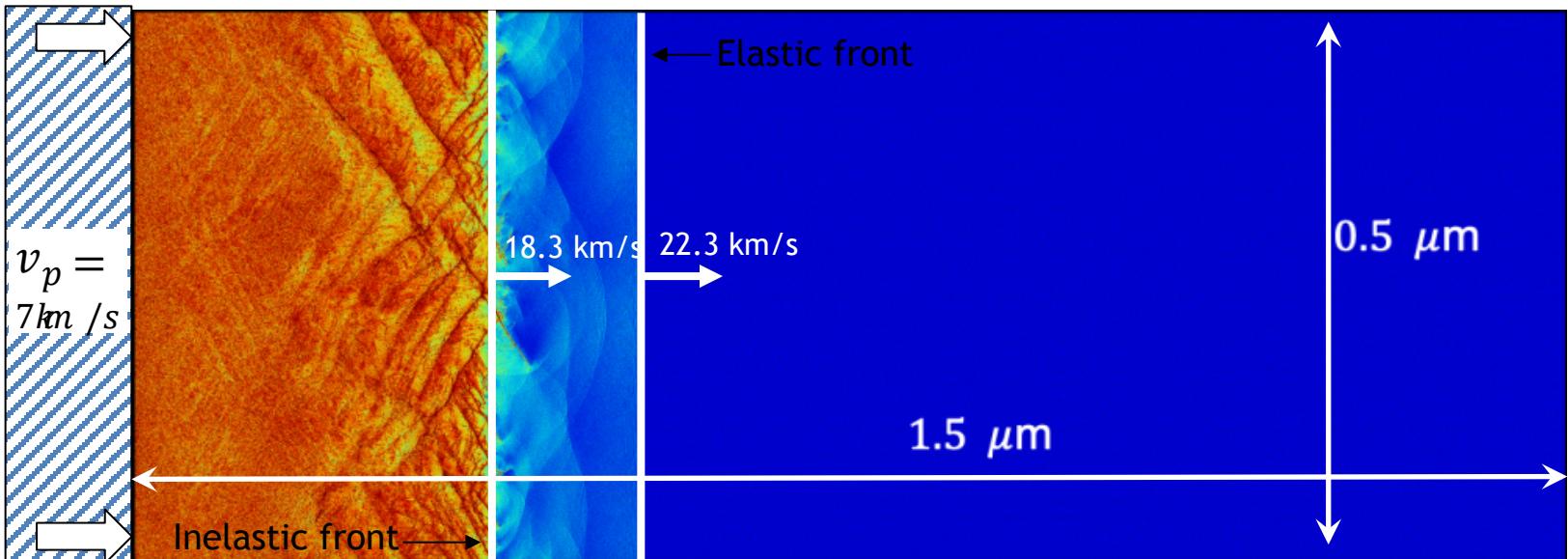
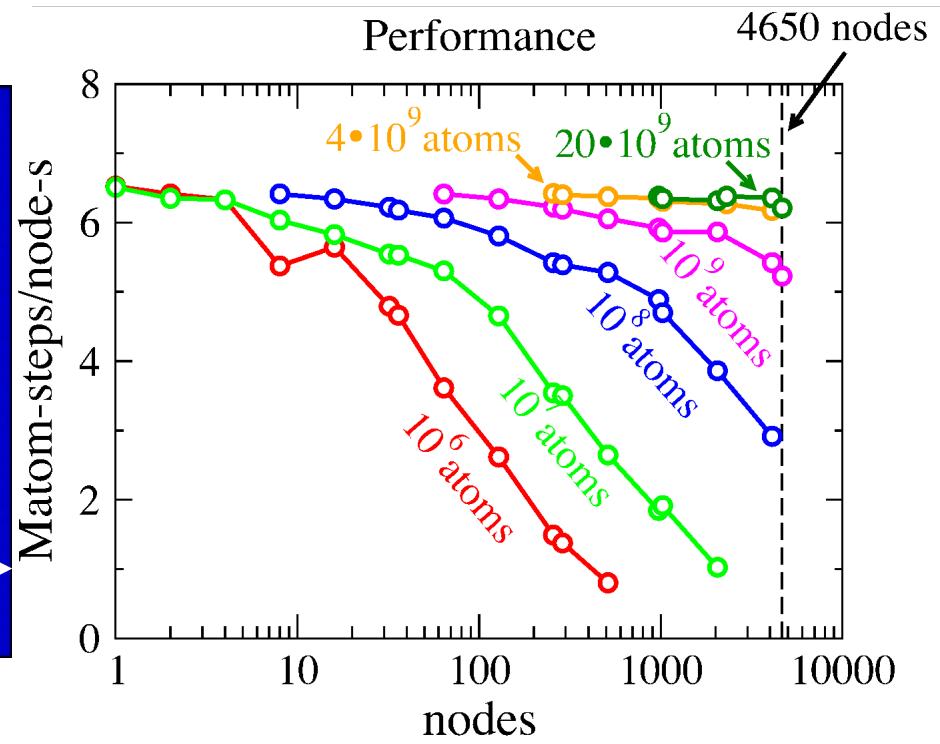




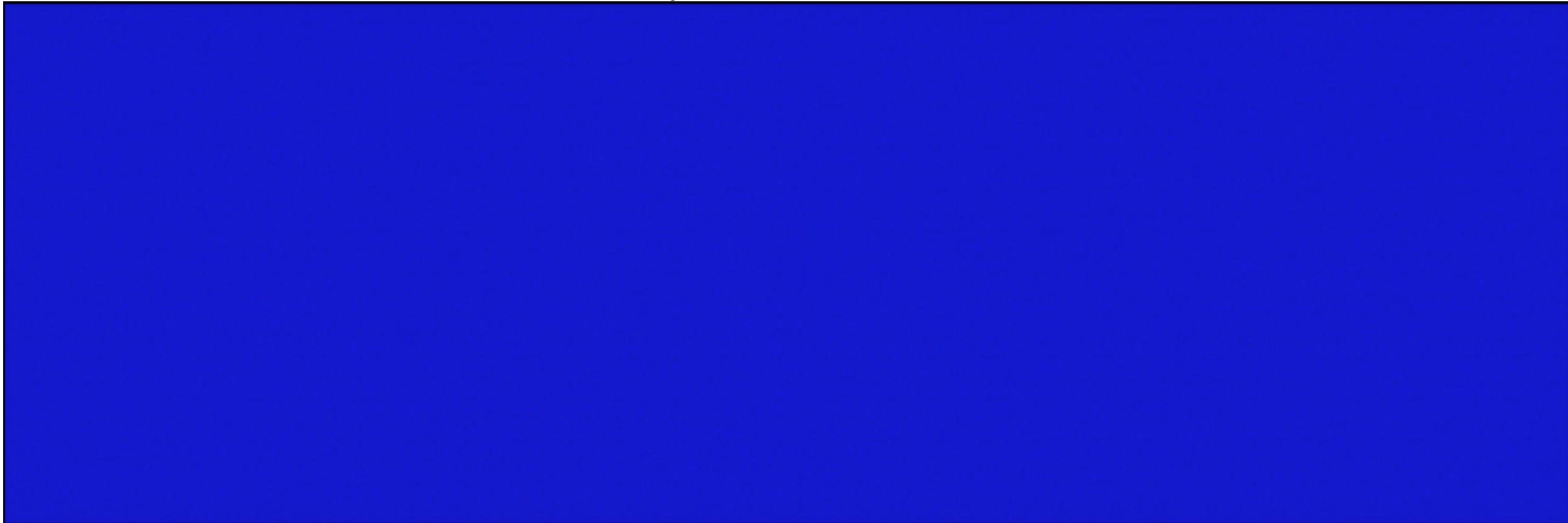
Gordon Bell Finalist

- ML-IAP cost will be dictated by the descriptors of the local atom environment
- Team from USF, Sandia, NERSC, NVIDIA, KTH : doi.org/10.1145/3458817.3487400

Breakdown of timing:



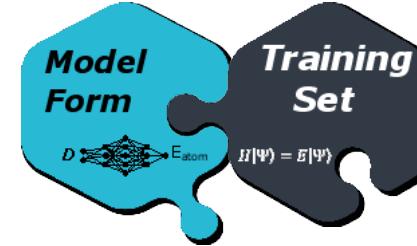
- 2.6 billion atom diamond sample, $0.5 \times 1.5 \mu\text{m}$
- Shock wave in $\langle 110 \rangle$ direction initiated by piston, $v_p = 7 \text{ km/s}$.



- Novel mechanism of inelastic deformations observed for the 1st time - multiple cracks create multiple sound waves which interfere while propagating towards the elastic front

Transformative opportunity - direct atomic-scale insight by running simulations at experimental time and length scales

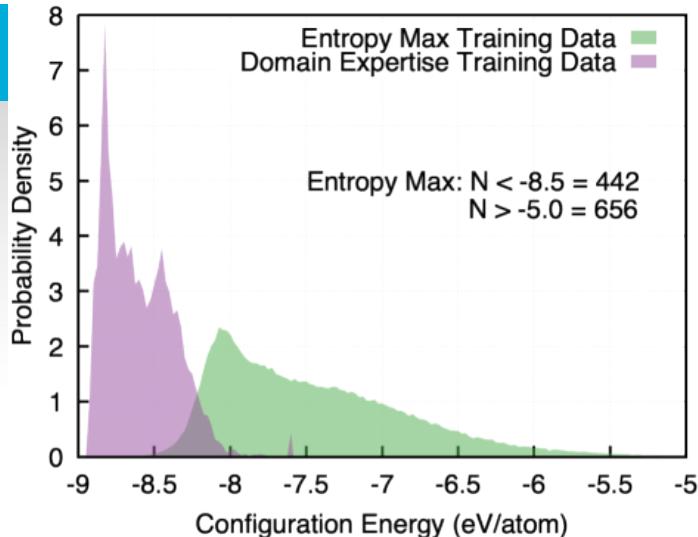
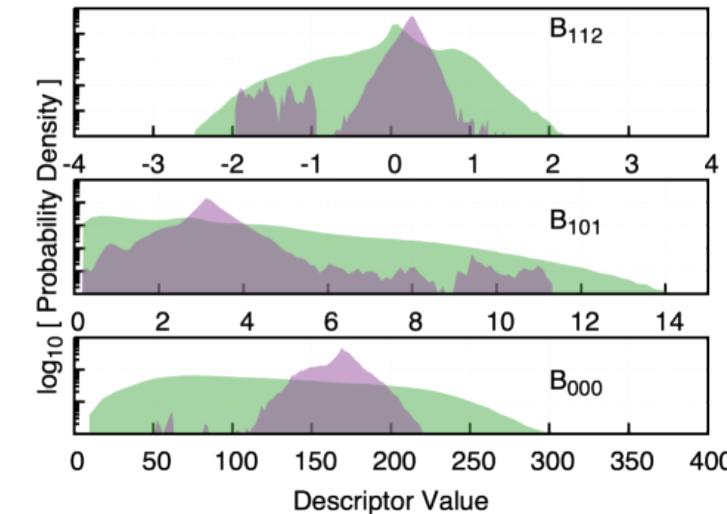
Maximized Diversity in Training Sets



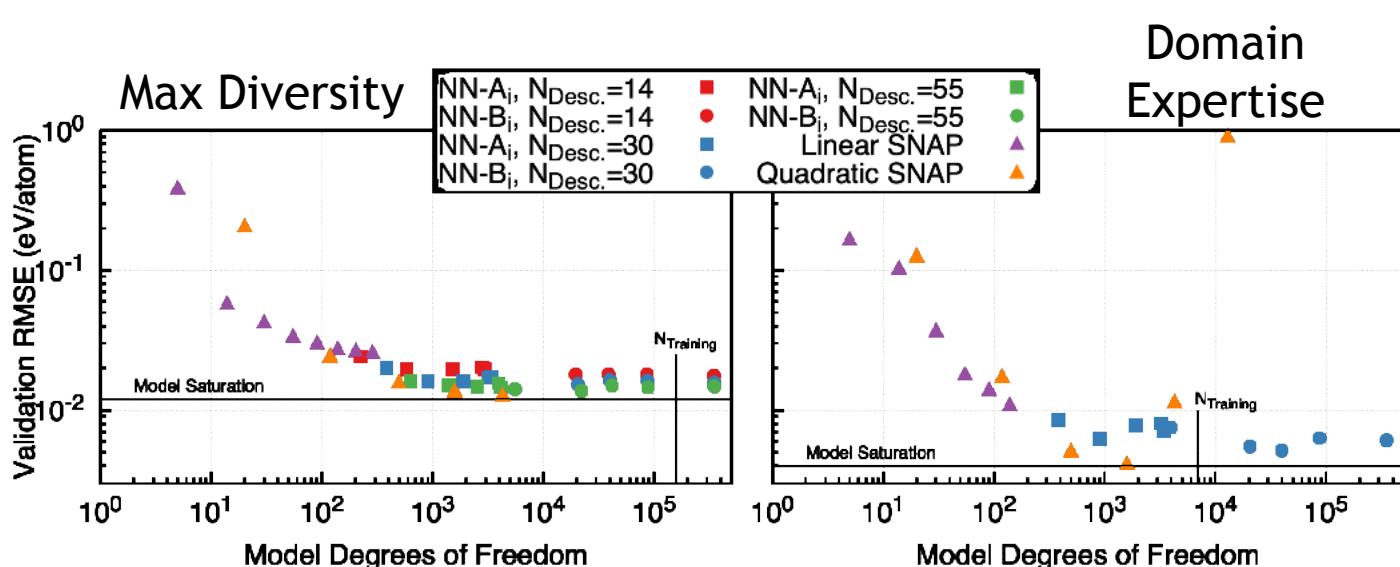
Montes, Perez, Lubbers, Pereyra
[arXiv:2201.09829v1](https://arxiv.org/abs/2201.09829v1)

Model form - Training Pairing

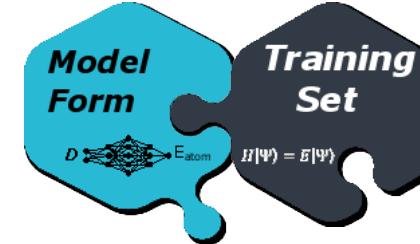
- SNAP models are really only tied to bispectrum components as descriptors, model form is flexible
- How complex of a model is needed to capture the training set? Linear? Deep Neural Network?



- Accuracy of **all** model forms saturates, true of simple linear and NN models!
- Observed for user constructed and automated training set generation!

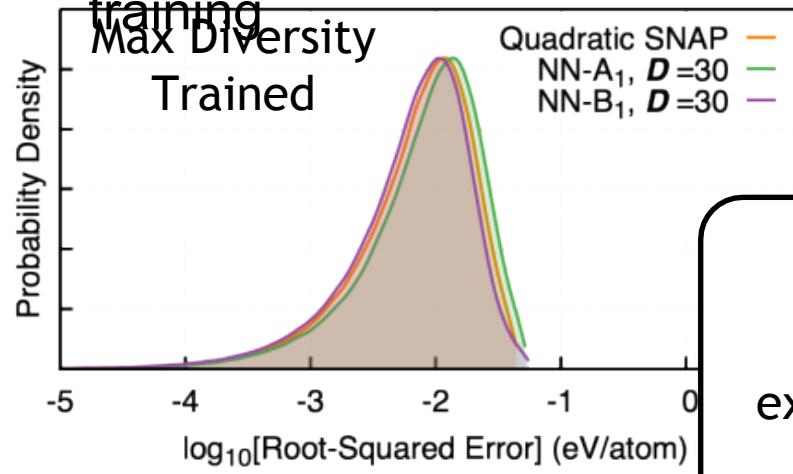


Interpolation vs. Extrapolation

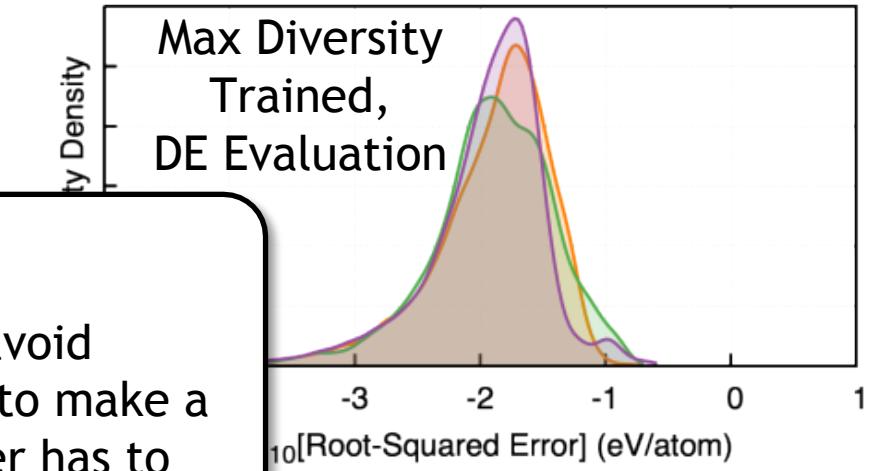


Montes, Perez, Lubbers, Pereyra
[arXiv:2201.09829v1](https://arxiv.org/abs/2201.09829v1)

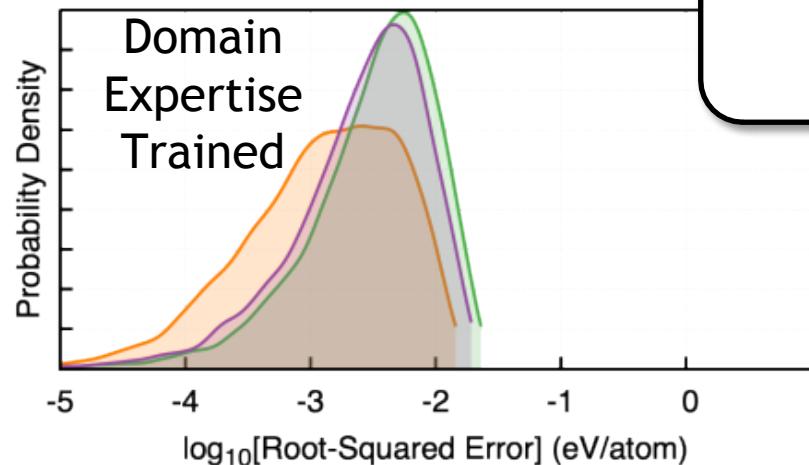
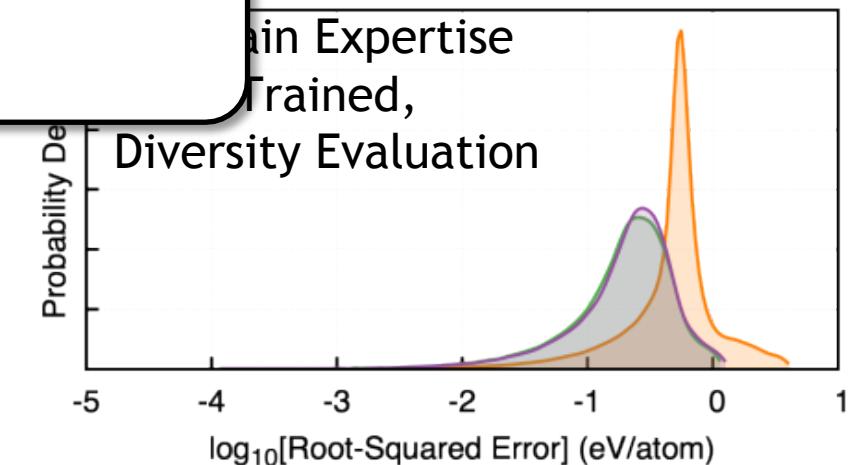
- Interpolation : Fed the **same** 'kind' of validation data as training



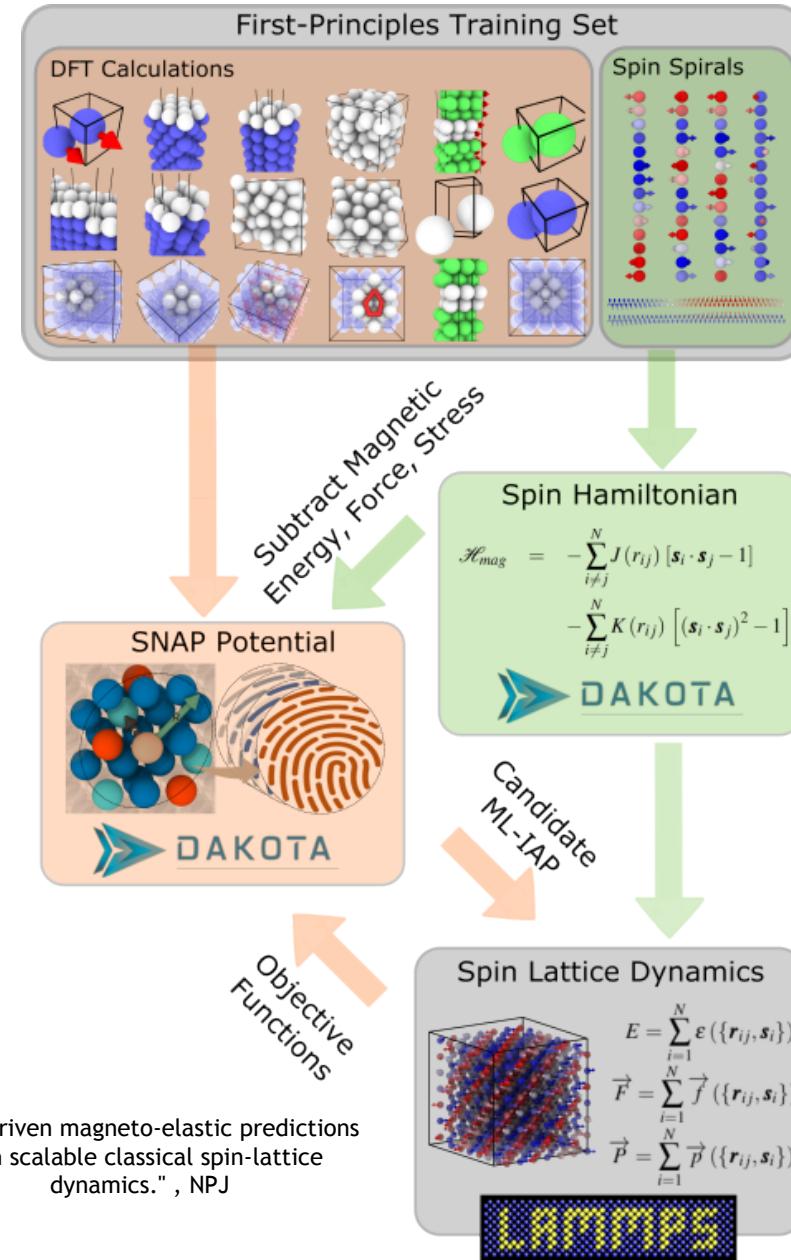
- Extrapolation : Fed the **opposite** 'kind' of validation data as training



The best way to avoid extrapolation errors is to make a training set that never has to extrapolate!



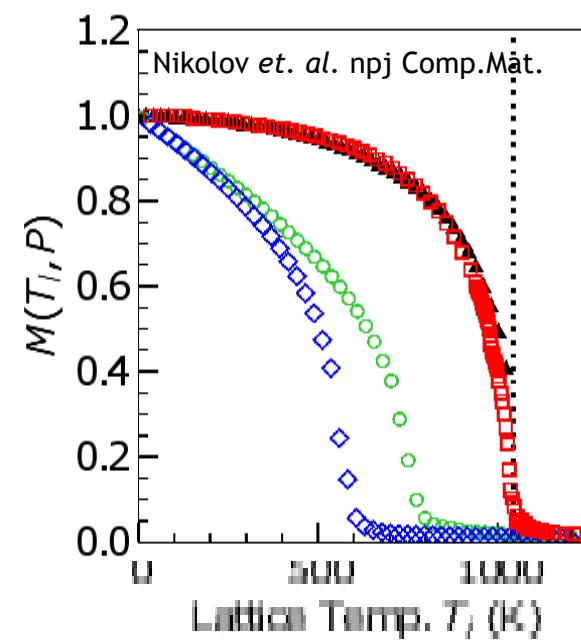
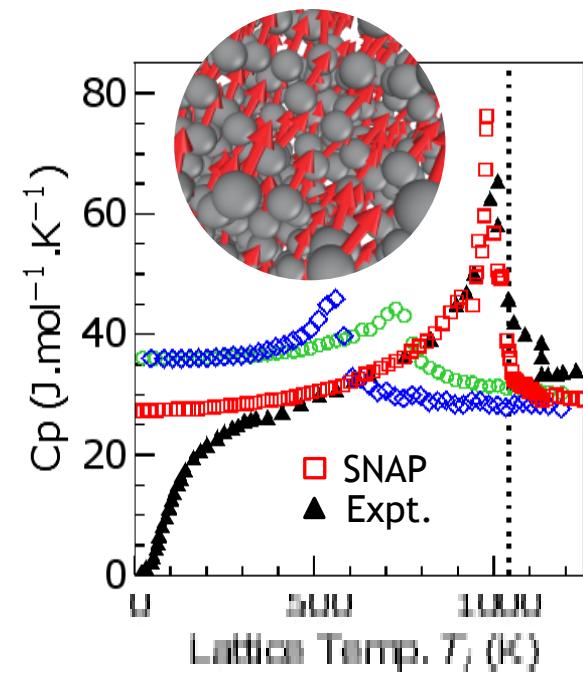
Magnetic Materials Simulations



"Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics.", NPJ

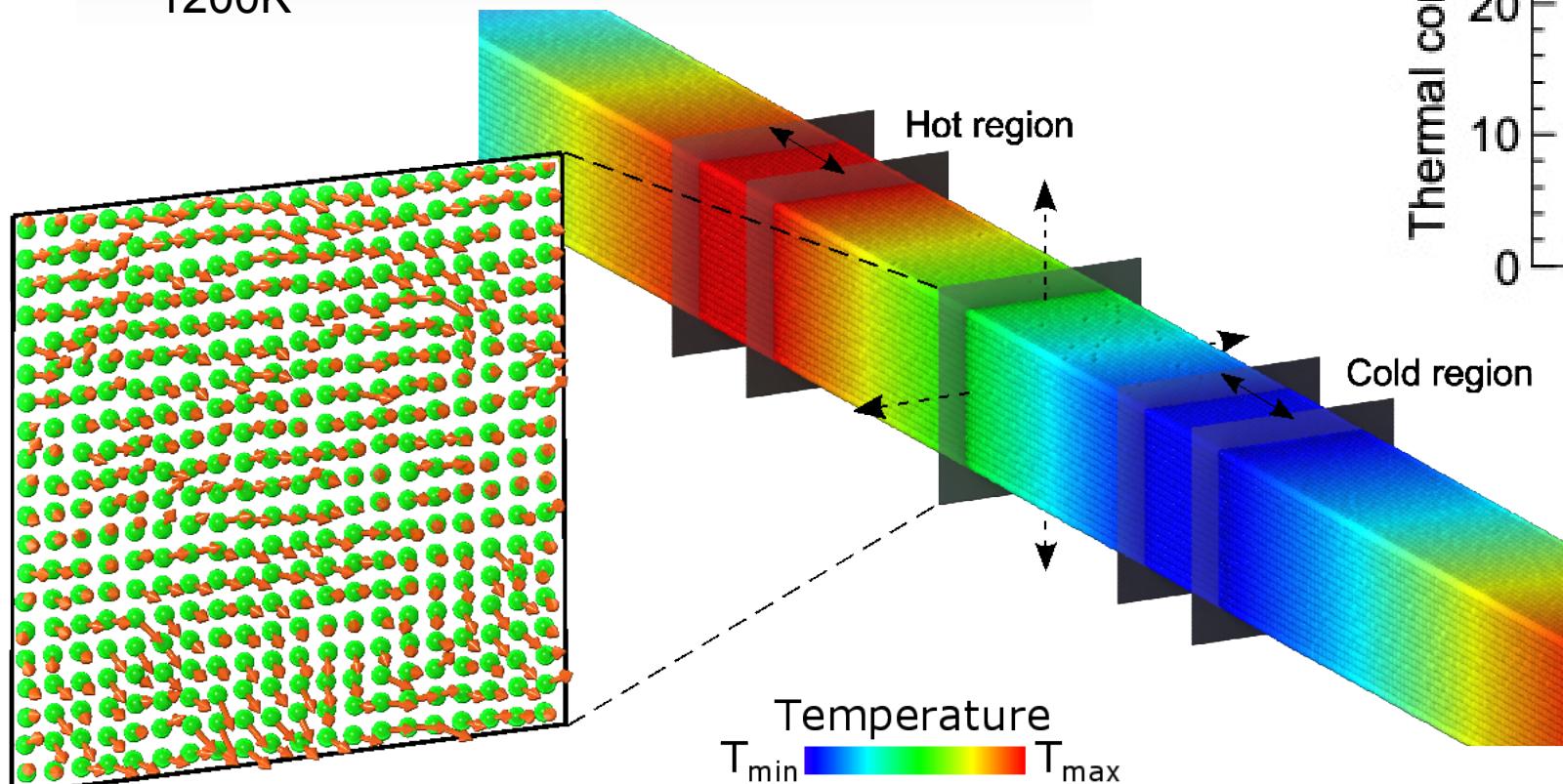
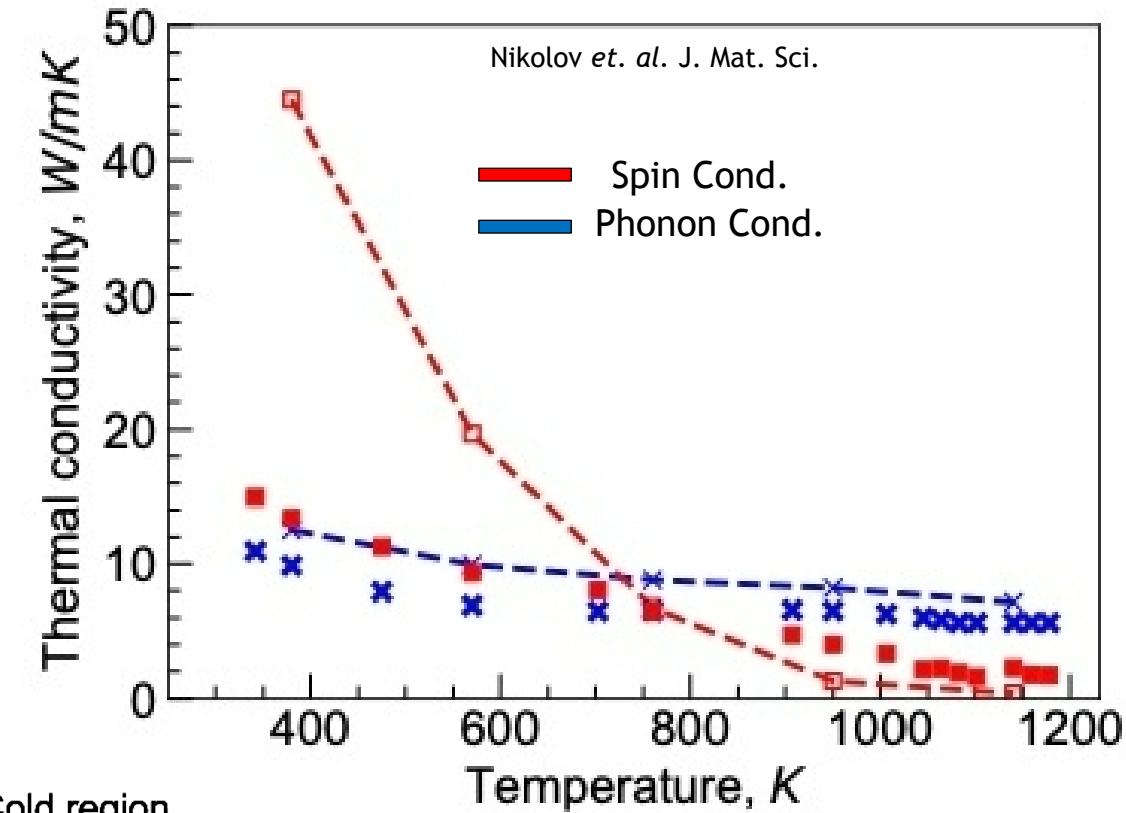
Fe; Everyone's Favorite

- Transformational capability to study magnetic materials at the grain scale
- Explicit treatment of spin dynamics captures the second order phase transition at Curie temperature



Finite Temperature Magnetism

- Hot/cold regions are spaced 28.8 nm apart
- Thermal gradient established by setting hot region to $T_{\max} = 1.08T_{\min}$, $T_{\min} : 300 - 1200\text{K}$

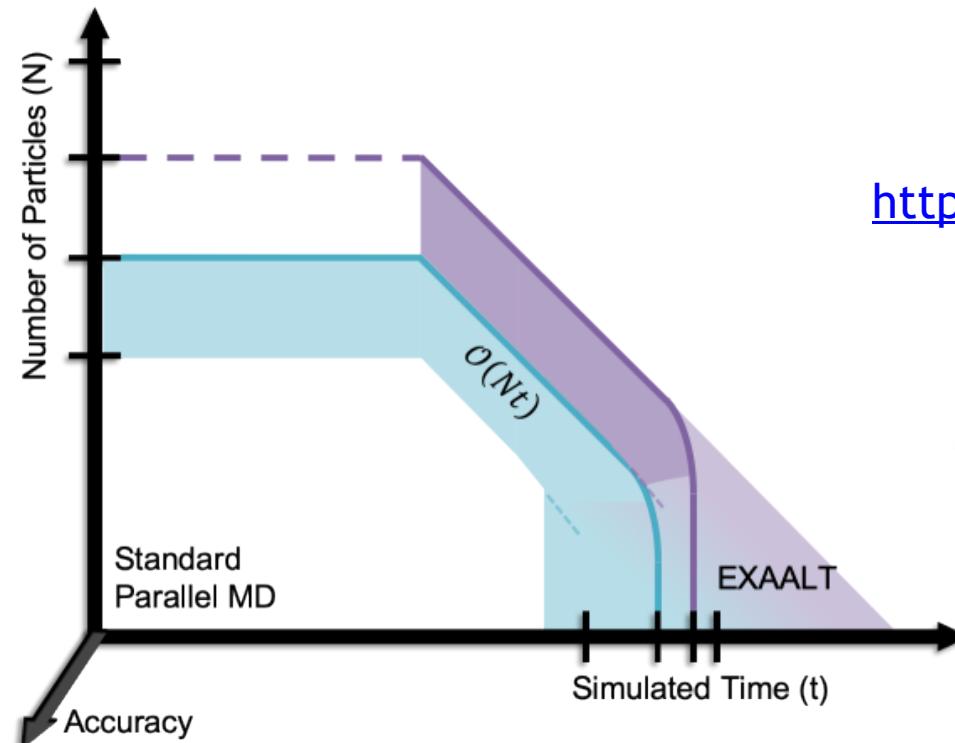


- Magnon-phonon scattering significantly reduces conductivity
- Magnons more conductive than phonons where $T < 0.5T_{\text{Curie}}$

Nikolov et. al. J. Mat. Sci.

Conclusions and Path Forward

- While harder to quantify, the fidelity of our MD simulations needs to be a key consideration at the Exascale
- Data-driven interatomic potentials (SNAP, SNAP-NN) allow for MD predictions of challenging material problems.



<https://github.com/FitSNAP/FitSNAP>

<http://lammps.sandia.gov>

Gordon Bell Finalist Paper:
doi.org/10.1145/3458817.3487400

Entropy Maximization
 Paper:
[arXiv:2201.09829v1](https://arxiv.org/abs/2201.09829v1)

Contact Information:
mitwood@sandia.gov

Sandia
National
Laboratories

U.S. DEPARTMENT OF
ENERGY

Office of
Science

