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2 I The Master Plot
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*  What is possible for MD at the Exascale?
* Assume your problem has some specified ‘
Shock length-scale dependence : N~L¢
Physics; - Assume the associated time-scale goes as t~L" |
~t  Diffusive process

:4 in 3-D, N~t3/2 B

Soft Matter Dynamics
“““ » (polymers); N~t<3/2 ‘

¥ - But what if you care about a system |
EXAALT governed by rare event dynamics? |

Simulated Time (t)
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Interatomic Potentials as Multi-Scaling
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|AP can be useful without |
being physically motivated |

Preserving accuracy ]
through scales while
becoming computationally
efficient

Need to be cautious of what
is promised with machine

learning, most of MD will be |
extrapolation I

Length ‘



4+ I Environment of Machine Learning Techniques

Descriptors Training Technique / Model Form
* Bond distances, angles [Behler] * Linear Regression
« Moment tensors [ShapeeV] « Stochastic Gradient Descent
» Bispectrum components [Cysani, e (Gaussian Process Regression
Thompson]

« Smooth overlap of atomic positions “
[Cysani]

* Atomic cluster expansion [Drautz]

Data Needs:

*When Npor~Nryqin, high risk of overfitting — Poor Interpolation

*When training diversity is low — Poor Extrapolation

*Running MD will expose these short comings (energy drift, instabilities,
unphysical behavior)



‘ SNAP Applications

SNL Involved, Independent

InP
WBeHe
Mo

Actinides

NiMo
LiN
Various
InP
AINbTi
Si

Al

Fe

2014

2015
2017

2017
2018
2018

2019
2020

2020
2020
2020
2021
2021

Dislocation motion
Radiation damage, defects
Plasma facing materials
Phase diagram prediction
Shock, phase transitions
Phase diagram prediction
Super-lonic Conductor

Accuracy/Cost comparison
Radiation damage, defects
High entropy alloy design
Neural network SNAP
Predicting electron density

Magnetic phase transition

SNL, Thompson 31
SNL, Thompson 31

SNL, Wood
UCSD, Ong
SNL/LLNL

UCSD, Ong
UCSD, Ong
UCSD/SNL

56
31
56
31

31
10-130

SNL, Cusentino 241
SNL, Tranchida 1596

UNLV, Zhu
SNL, Ellis
SNL, Nikolov

1596
91
1596

665
25,052

1000
20,000
2,000
3,000
1,000
1,000
7,250
>5,000
30

683

Linear

Linear

Linear

Linear
Quadratic
Linear
Lin+Charge
Lin, Quad
EME
Quadratic |

NN

NN
Quad+Spin



) ‘ SNAP Applications SNL Involved, Independent

(more in the literature, not an exhaustive i

WBeHN Plasma facing materials SNL, Cusentino >40,000 Linear

x C - Planetary impacts, shock USF, Willman 1596 30,000 Quadratic
C,V 2021 Metal plasmas SNL, Wood 1596 10,000 Quadratic
MoNbTaT - HEA alloy design SNL, McCarthy - >5,000 EME
GeSe - Vitrification UCD, Sievers - >5,000 EME
LiMoS - Li-ion batteries UConn, Dongarre - >5,000 -
SiGeSnP - Thermoelectric materials GWU, Li - >5,000 -

* R/ - Model form selection LANL/SNL - 330,000 NN ]

So what should you train a ML-IAP on? How do you recognize failures (poor extrapolati

* Growing evidence that SNAP is a general use material model form, unlike
any interatomic potential used in MD to date

 SNAP model training software now incorporated in Materials Design Inc.

nradi~rte



https://www.materialsdesign.com/

https://github.com/FitSNAP/FitSNAP
http://lammps.sandia.gov

7 I Components of ML-MD

« Accuracy,
qnsferability

Training
Set |

* Representation,

Sampling,

H|¥) = E|¥) @

.........

* Python backend

\ | rﬂ\

Simulation™~) Local |
Engine

Bring your own model

 Performance Portable


https://github.com/FitSNAP/FitSNAP

s I Assembling a Better Training Set

Description Ng Np o0g oF V(X) = — H(.x, y) =+ S(JC)
W-Be: Pseudo- Cross- Self-
Elastic Deform’ 3946 68040 3-10° 2.10° potential entropy entropy
Equation of State” 1113 39627 2-10° 4-10%

DFT-MD' 3360 497124 7-10* 6 - 10°
Surface Adhesion 381 112527 2-10* 9-10*
T Multiple crystal phases included in this group:

ECP
Domain Expertise Training Maximizing Diversity
» Use cases for the potential are known, * Framework of time acceleration tools
run DFT on representative can generate new training by running
Conﬁgurations MD with lots of replicaS
« Intrinsically biased to a small region of * (above) Self-entropy landscape of the

confiquration spbace average interatomic distance



Training

Setl

To be or Not to be Transferrable e

Simple Model, Complex Descriptor 20000 —

9

* A general use IAP is much more challenging
to create. A diamond
 Phases of Carbon from 0-4TPa, 0-15,000K 15000 | @ SNAP:sc ~
reproduced because it was trained to do so. T Ak hueomot
8 ~g——————————————————— sz ——  DFT: bc8
6 | © @ Hydrostatic Diamond _- 45 10000 DFT SC . —
B Hydrostatic USPEX i DFT: hugoniot
= 4 $ DD 1 g
E % Shear Diamond E -
o 21 ® GST Diamon d _
E ° = Diamond Bnding Energy i ﬁ
- o ) 5000 J. Willga&et. al. (In Prep) —
= 2F -
&D -
-or 7 0 i 1 i 1 I
&ln . 0 1000 2000 3000 4000 5000 |
I ) . ) )
105 3 4 S 6 7 Pressure (GPa) |
Volume (A”/atom)
* C - Planetary impacts, shock USF, Willman Ny =1596 Nga_in___ Quadratic L



Exascale ML-MD
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Breakdown of timing:

Gordon Bell Finalist

* ML-IAP cost will be dictated by the
descriptors of the local atom environment

« Team from USF, Sandia, NERSC, NVIDIA,
KTH : doi.org/10.1145/3458817.3487400

Performance 4650 nodes
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https://doi.org/10.1145/3458817.3487400

11 Exascale ML-MD doi.org/10.1145/3458817.3487400

= 2.6 billion atom diamond sample, 0.5x1.5 um
= Shock wave in <110> direction initiated by piston, v, = 7 km/s.

m  Novel mechanism of inelastic deformations observed for the 15t time - multiple cracks create multiple sound waves which
interfere while propagating towards the elastic front

Transformative opportunity - direct atomic-scale insight by running simulations at experimental time and length scales


https://doi.org/10.1145/3458817.3487400
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Maximized Diversity in Training Sets

Training
Set

HIW) = E9%

Montes, Perez, Lubbers, Pereyra

arXiv:2201.09829v1

8 —
Model form - Training Pairing A Domain Expertiss Training Data
 SNAP models are really only tied to o7 g
. . & 5F Entropy Max: N <-8.5 = 442 3-
bispectrum components as descriptors, ¢ . N >-5.0 = 656 2 |
model form is flexible 25l g
. 2 2
* How complex of a model is needed to =2t =
capture the training set? Linear? Deep ' A g Booo
1 1 | 1 1 l ) |
Neural Network? 0-9 85 8 75 -7 65 -6 55 -5 0 50 100 150 200 250 300 350 400
Configuration Energy (eV/atom) Descriptor Value
Domain
o Max Diversity [Rg\oeZld § B Ne=zs o Expertise
,—..,1 E I eSC.: = I eSC.~ A rin
* Accuracy of all model forms saturates, §~ | | NNB. N2 § quacnete GNAP 4
true of simple linear and NN models! = A L,
glo” ¢ 1
= L
o A Nrraining A
* Observed for user constructed and R ‘“‘-‘,.E‘! ik A
_ . o2 E B A Ny
automated training set generation! g‘“ P L I
10° 10! 102 10%  10* 10° 10° 10" 102 10® 10t 10°

Model Degrees of Freedom

Model Degrees of Freedom


https://arxiv.org/abs/2201.09829v1

13 | Interpolation vs. Extrapolation

* Interpolation : Fed the same
‘kind’ of validation data as

Probability Density

Probability Density

__ng{n':nigersi ty

« Extrapolation : Fed the opposite
‘kind’ of validation data as training

ty Density

Training

Set Montes, Perez, Lubbers, Pereyra

arXiv:2201.09829v1

HIW) = E9%

Max Diversity
Trained,
DE Evaluation

Quadratic SNAP —
. NN-A;, D=30 —
Trained NN-By, D=30 —
I 4
5 4 -3 -2 -1 0

log4g[Root-Squared Error] (eV/atom)

Domain
Expertise
Trained /

The best way to avoid

extrapolation errors is to make a
training set that never has to

extrapolate!

~N

-3 -2 -1 0
1o[Root-Squared Error] (eV/atom)

in Expertise I
} rained, |

logg[Root-Squared Error] (eV/atom)

¥

Probability D

Diversity Evaluation I

1 1

5 4 -3 -2 -1 0

logg[Root-Squared Error] (eV/atom)


https://arxiv.org/abs/2201.09829v1

14 I Magnetic Materials Simulations

First-Principles Training Set
" DFT Calculations )
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Fe; Everyone’s Favorite

Transformational capability to study
magnetic materials at the grain scale

Explicit treatment of spin dynamics

captures the second order phase
transition at Curie temperature

"Nikolov et. al. npj Comp.Mét. 80
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Magnetic Materials Simulations

Finite Temperature Magnetism

» Hot/cold regions are spaced 28.8 nm apart

« Thermal gradient established by setting hot
regionto T ., = 1.08T ., , T, : 300 -
1200K

Hot region
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Cold region

Temperature, K

Magnon-phonon scattering
significantly reduces conductivity

Magnons more conductive than
phonons where T < 0.5T .



Conclusions and Path Forward

*  While harder to quantify,
the fidelity of our MD
simulations needs to be a
key consideration at the
Exascale

https://github.com/FitSNAP/FitSNAP

http://lammps.sandia.gov

Number of Particles (N)

Gordon Bell Finalist Paper:
doi.org/10.1145/3458817.3487400
- Data-driven interatomic

potentials (SNAP, SNAP- Standard Entropy Maximization
NN) allow for MD Parallel MD | Paper:
predictions of challenging Simulated Time (1) arXiv:2201.09829v1
material problems. Accuracy
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