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The Master Plot2

• What is possible for MD at the Exascale?

• Assume your problem has some specified 
length-scale dependence : N~Lᵯ�  

• Assume the associated time-scale goes as t~Lᵯ�
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• But what if you care about a system 
governed by rare event dynamics?Standard 

Parallel MD EXAALT

Accuracy (?)

Soft Matter Dynamics 
(polymers); N~t<3/2

Diffusive process 
in 3-D; N~t3/2

Shock 
Physics; 
N~t3



Solid Mechanics,
 Hydrodynamics

Kinetic Monte Carlo, 
Phase Field

Interatomic Potentials as Multi-Scaling3

• IAP can be useful without 
being physically motivated

• Preserving accuracy 
through scales while 
becoming computationally 
efficient

• Need to be cautious of what 
is promised with machine 
learning, most of MD will be 
extrapolation
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Environment of Machine Learning Techniques4

Descriptors Training Technique / Model Form

• Linear Regression
• Stochastic Gradient Descent
• Gaussian Process Regression

…

• Bond distances, angles [Behler]
• Moment tensors [Shapeev]
• Bispectrum components [Cysani, 

Thompson]
• Smooth overlap of atomic positions 

[Cysani]
• Atomic cluster expansion [Drautz]

…



SNAP Applications
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Ta

System

InP

WBeHe

Actinides

NiMo

LiN

Various

InP

Al

2014

Year

2015

2017

2018

2018

2019

2020

2020

2021

Dislocation motion

Usage

Radiation damage, defects

Plasma facing materials

Shock, phase transitions

Phase diagram prediction

Super-Ionic Conductor

Accuracy/Cost comparison

Radiation damage, defects

Predicting electron density

31

NDoF

31

56

56

31

31

10-130

241

91

363

NTraining

665

25,052

20,000

2,000

3,000

1,000

1,000

30

Linear

Descriptors

Linear

Linear

Quadratic

Linear

Lin+Charge

Lin, Quad

EME

NN

SNL, Thompson

Origin

SNL, Thompson

SNL, Wood

SNL/LLNL

UCSD, Ong

UCSD, Ong

UCSD/SNL

SNL, Cusentino

SNL, Ellis

Mo 2017 Phase diagram prediction 31 1000 LinearUCSD, Ong

Fe 2021 Magnetic phase transition 1596 683 Quad+SpinSNL, Nikolov

AlNbTi 2020 High entropy alloy design 1596 7,250 QuadraticSNL, Tranchida

Si 2020 Neural network SNAP 1596 >5,000 NNUNLV, Zhu

SNL Involved, Independent



SNAP Applications
6

WBeHN

System

C

C, V

-

Year

-

2021

Plasma facing materials

Usage

Planetary impacts, shock

Metal plasmas

56*

NDoF

1596

1596

>40,000

NTraining

30,000

10,000

Linear

Descriptors

Quadratic

Quadratic

SNL, Cusentino

Origin

USF, Willman

SNL, Wood

MoNbTaT
i

- HEA alloy design - >5,000 EMESNL, McCarthy

GeSe - Vitrification - >5,000 EMEUCD, Sievers

W - Model form selection - 330,000 NNLANL/SNL

LiMoS - Li-ion batteries - >5,000 -UConn, Dongarre

SiGeSnP
b

- Thermoelectric materials - >5,000 -GWU, Li

So what should you train a ML-IAP on? How do you recognize failures (poor extrapolations)?

(more in the literature, not an exhaustive list)

• Growing evidence that SNAP is a general use material model form, unlike 
any interatomic potential used in MD to date

• SNAP model training software now incorporated in Materials Design Inc. 
products

SNL Involved, Independent

https://www.materialsdesign.com/


Components of ML-MD7
https://github.com/FitSNAP/FitSNAP 

http://lammps.sandia.gov

• Python backend 
= 

Bring your own model

• Accuracy, 
Transferability

• Representation, 
Sampling, 
Complexity…

• Performance Portable 
Kernels

https://github.com/FitSNAP/FitSNAP


8 Assembling a Better Training Set

Domain Expertise Training

• Use cases for the potential are known, 
run DFT on representative 
configurations

• Intrinsically biased to a small region of 
configuration space

Maximizing Diversity

• Framework of time acceleration tools 
can generate new training by running 
MD with lots of replicas

• (above) Self-entropy landscape of the 
average interatomic distance

Pseudo-
potential

Cross-
entropy

Self-
entropy
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• A general use IAP is much more challenging 
to create.

• Phases of Carbon from 0-4TPa, 0-15,000K 
reproduced because it was trained to do so.

Simple Model, Complex Descriptor

To be or Not to be Transferrable

C - Planetary impacts, shock Ntrain
=30,000

QuadraticUSF, Willman

J. Willman et. al. (In Prep)

NDoF=1596



Exascale ML-MD10

• ML-IAP cost will be dictated by the 
descriptors of the local atom environment

• Team from USF, Sandia, NERSC, NVIDIA, 
KTH : doi.org/10.1145/3458817.3487400

Gordon Bell Finalist

Breakdown of timing:

ᵆ� ᵅ� =
7ᵅ�ᵅ� /ᵆ�

18.3 km/s 22.3 km/s

Inelastic front

Elastic front

https://doi.org/10.1145/3458817.3487400


Exascale ML-MD11

 Novel mechanism of inelastic deformations observed for the 1st time – multiple cracks create multiple sound waves which 
interfere while propagating towards the elastic front

Transformative opportunity - direct atomic-scale insight by running simulations at experimental time and length scales

doi.org/10.1145/3458817.3487400

https://doi.org/10.1145/3458817.3487400


Maximized Diversity in Training Sets12

• SNAP models are really only tied to 
bispectrum components as descriptors, 
model form is flexible

• How complex of a model is needed to 
capture the training set? Linear? Deep 
Neural Network?

Model form – Training Pairing

Max Diversity
Domain 

Expertise

Montes, Perez, Lubbers, Pereyra

• Accuracy of all model forms saturates, 
true of simple linear and NN models!

• Observed for user constructed and 
automated training set generation!

arXiv:2201.09829v1 

https://arxiv.org/abs/2201.09829v1


13 Interpolation vs. Extrapolation

Max Diversity
Trained

Domain 
Expertise
Trained

• Interpolation : Fed the same 
‘kind’ of validation data as 
training

• Extrapolation : Fed the opposite 
‘kind’ of validation data as training

Max Diversity
Trained,

DE Evaluation

Domain Expertise
Trained,

Diversity Evaluation

The best way to avoid 
extrapolation errors is to make a 

training set that never has to 
extrapolate! 

arXiv:2201.09829v1 
Montes, Perez, Lubbers, Pereyra

https://arxiv.org/abs/2201.09829v1


Magnetic Materials Simulations14

SNAP
Expt.

Nikolov et. al. npj Comp.Mat.

"Data-driven magneto-elastic predictions 
with scalable classical spin-lattice 

dynamics." , NPJ

• Transformational capability to study 
magnetic materials at the grain scale

• Explicit treatment of spin dynamics 
captures the second order phase 
transition at Curie temperature

Fe; Everyone’s Favorite
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Spin Cond.
Phonon Cond.

Nikolov et. al. J. Mat. Sci.

Magnetic Materials Simulations

Finite Temperature Magnetism

• Hot/cold regions are spaced 28.8 nm apart
• Thermal gradient established by setting hot 

region to Tmax = 1.08Tmin ,Tmin : 300 - 
1200K

• Magnon-phonon scattering 
significantly reduces conductivity

• Magnons more conductive than 
phonons where T < 0.5TCurie



Conclusions and Path Forward16

Contact Information:

mitwood@sandia.gov

• While harder to quantify, 
the fidelity of our MD 
simulations needs to be a 
key consideration at the 
Exascale

• Data-driven interatomic 
potentials (SNAP, SNAP-
NN) allow for MD 
predictions of challenging 
material problems.

https://github.com/FitSNAP/FitSNAP 

http://lammps.sandia.gov

Gordon Bell Finalist Paper:
doi.org/10.1145/3458817.3487400

Entropy Maximization 
Paper:

arXiv:2201.09829v1

mailto:mitwood@sandia.gov
https://github.com/FitSNAP/FitSNAP

