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Scalable Randomized Benchmarking

(a) Mirror RB
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Many-qubit errors such as crosstalk are not apparent
in low-width circuits

Randomized Benchmarking (RB) [1] and Random
Circuit Sampling (RCS) [2] characterize average gate
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e Large gate overhead (RB) :
e High computational cost for universal gate sets §
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[1] E.MMagesan et al., Phys. Rev. Lett. 106, 180504 (2011). 10° 10" 102 10>
[2] Y. Liu et al. (2021), arXiv:2105.05232 Benchmark Depth + 1 (log scale)

[3] T. Proctor et al. (2022) Nat. Phys. 18,75-79 Figure: T. Proctor et al. arXiv:2112.09853



Scalable RB of Universal Gate Sets

We apply circuit mirroring to construct a scalable RB protocol for universal
gate sets with

e Flexible gate set (two qubit gates can be CZ + Haar-Random 1-Qubit Gates
any controlled Pauli axis rotations) 1007

e Minimal gate overhead

e Low computational cost to construct
circuits

e Efficiently computable circuit result
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1[—1 Qubit, r, = 0.25(3)%
2 Qubits, r, = 0.73(2)%
3 Qubits, r, = 1.48(3)%
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N
o
L

Effective Polarization (%)

o

100 101 102

Benchmark Depth + 1



Structure of Mirror RB

MRB measures the average error rate r,, of circuit layers from a distribution Q(L)

random 2-qubit gate N 1-qubit gates sampled from
layer, fixed average I d 2-design
gate density =

.............

Run circuits with many depths with layers sampled from Q(L)

The average effective polarization (measure of success) of MRB circuits decays
exponentially in depth, at a rate determined by r,

SdZApd ra =




Non-Clifford Mirror Circuit Construction

1. Sample initial random 1-qubit gate 2. Append (layer-by-layer) inverse
layer and circuit layers from Q(L)
P inverses
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3. Randomized compiling:

e Insert random Paulis after |0>*

1-qubit gate layers
e Insert “corrections” before

1-qubit gate layers that cancel 0) -'

the action of the random Paulis
e Circuit ideal output is a definite

bit string 0) —|-



Sensitivity of Non-Clifford MRB

Only Clifford 2-qubit gates: Gate error twirled into Pauli noise when 1-qubit gate noise is gate-independent
e Special case of randomized compiling as defined by Wallman and Emerson [4]

With Non-Clifford Two-Qubit Gates: Gate error not perfectly twirled
e 1, typically approximates average layer infidelity closely for combination of stochastic and coherent
errors
e  Our circuit structure is insensitive to some coherent errors
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Demonstrating MRB with Universal Gate Sets

MRB on 4 linearly-connected superconducting qubits (Advanced Quantum Testbed at LBNL)

CS, CSt + Haar-Random CZ + Haar-Random 1-Qubit
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e Effective polarization decays exponentially

@ @ e e CS, CS' gate set has slightly higher average error than CZ
@ : - . (cross-validated with Cycle Benchmarking)




Experimental Validation of Non-Clifford MRB

Fit a model to MRB data assigning an error channel to each gate
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depolarizing or Pauli stochastic error channels
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Many Qubit MRB Captures Crosstalk Error

Predict n>2 qubit MRB error rate from 1- and 2-qubit MRB error rates using

rg ~ E Q) ( L) €L
Lell 4 LL : layer set )
Assuming no crosstalk: ) : layer sampling distribution

€L : infidelity of layer L
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Effective Polarization (%)

Non-Clifford MRB is Highly Scalable

Mirror RB of a universal gate set on 27 superconducting qubits (IBMQ Montreal)
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10 Qubits, ro = 8.4(4)%
—— 18 Qubits, rqo = 20.4(6)%
—— 27 Qubits, rqo = 28(1)%




Summary

Non-Clifford Mirror RB is a highly-scalable benchmarking technique for average
performance
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e Has low gate overhead

e Has low classical computational cost

e Can extract information on many-qubit
error
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