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What applications or algorithms can it run? 

Arute et al., Nature 574, 505 (2019) 
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single-qubit gates chosen randomly from X Y W{ , , } on all qubits, 
followed by two-qubit gates on pairs of qubits. The sequences of gates 
which form the ‘supremacy circuits’ are designed to minimize the circuit 
depth required to create a highly entangled state, which is needed for 
computational complexity and classical hardness.

Although we cannot compute FXEB in the supremacy regime, we can 
estimate it using three variations to reduce the complexity of the circuits. 
In ‘patch circuits’, we remove a slice of two-qubit gates (a small fraction 
of the total number of two-qubit gates), splitting the circuit into two 
spatially isolated, non-interacting patches of qubits. We then compute 
the total fidelity as the product of the patch fidelities, each of which can 
be easily calculated. In ‘elided circuits’, we remove only a fraction of the 
initial two-qubit gates along the slice, allowing for entanglement 
between patches, which more closely mimics the full experiment while 
still maintaining simulation feasibility. Finally, we can also run full 
‘verification circuits’, with the same gate counts as our supremacy cir-
cuits, but with a different pattern for the sequence of two-qubit gates, 
which is much easier to simulate classically (see also Supplementary 
Information). Comparison between these three variations allows us to 
track the system fidelity as we approach the supremacy regime.

We first check that the patch and elided versions of the verification 
circuits produce the same fidelity as the full verification circuits up to 
53 qubits, as shown in Fig. 4a. For each data point, we typically collect 
Ns = 5 × 106 total samples over ten circuit instances, where instances 
differ only in the choices of single-qubit gates in each cycle. We also 
show predicted FXEB values, computed by multiplying the no-error prob-
abilities of single- and two-qubit gates and measurement (see also Sup-
plementary Information). The predicted, patch and elided fidelities all 
show good agreement with the fidelities of the corresponding full cir-
cuits, despite the vast differences in computational complexity and 
entanglement. This gives us confidence that elided circuits can be used 
to accurately estimate the fidelity of more-complex circuits.

The largest circuits for which the fidelity can still be directly verified 
have 53 qubits and a simplified gate arrangement. Performing random 
circuit sampling on these at 0.8% fidelity takes one million cores 130 
seconds, corresponding to a million-fold speedup of the quantum pro-
cessor relative to a single core.

We proceed now to benchmark our computationally most difficult 
circuits, which are simply a rearrangement of the two-qubit gates. In 
Fig. 4b, we show the measured FXEB for 53-qubit patch and elided ver-
sions of the full supremacy circuits with increasing depth. For the larg-
est circuit with 53 qubits and 20 cycles, we collected Ns = 30 × 106 samples 
over ten circuit instances, obtaining F = (2.24 ±0.21) × 10XEB

−3  for the 
elided circuits. With 5σ confidence, we assert that the average fidelity 

of running these circuits on the quantum processor is greater than at 
least 0.1%. We expect that the full data for Fig. 4b should have similar 
fidelities, but since the simulation times (red numbers) take too long to 
check, we have archived the data (see ‘Data availability’ section). The 
data is thus in the quantum supremacy regime.

The classical computational cost
We simulate the quantum circuits used in the experiment on classical 
computers for two purposes: (1) verifying our quantum processor and 
benchmarking methods by computing FXEB where possible using sim-
plifiable circuits (Fig. 4a), and (2) estimating FXEB as well as the classical 
cost of sampling our hardest circuits (Fig. 4b). Up to 43 qubits, we use 
a Schrödinger algorithm, which simulates the evolution of the full quan-
tum state; the Jülich supercomputer (with 100,000 cores, 250 terabytes) 
runs the largest cases. Above this size, there is not enough random access 
memory (RAM) to store the quantum state42. For larger qubit numbers, 
we use a hybrid Schrödinger–Feynman algorithm43 running on Google 
data centres to compute the amplitudes of individual bitstrings. This 
algorithm breaks the circuit up into two patches of qubits and efficiently 
simulates each patch using a Schrödinger method, before connecting 
them using an approach reminiscent of the Feynman path-integral. 
Although it is more memory-efficient, the Schrödinger–Feynman algo-
rithm becomes exponentially more computationally expensive with 
increasing circuit depth owing to the exponential growth of paths with 
the number of gates connecting the patches.

To estimate the classical computational cost of the supremacy circuits 
(grey numbers in Fig. 4b), we ran portions of the quantum circuit simu-
lation on both the Summit supercomputer as well as on Google clusters 
and extrapolated to the full cost. In this extrapolation, we account for 
the computation cost of sampling by scaling the verification cost with 
FXEB, for example43,44, a 0.1% fidelity decreases the cost by about 1,000. 
On the Summit supercomputer, which is currently the most powerful 
in the world, we used a method inspired by Feynman path-integrals that 
is most efficient at low depth44–47. At m = 20 the tensors do not reason-
ably fit into node memory, so we can only measure runtimes up to m = 14, 
for which we estimate that sampling three million bitstrings with 1% 
fidelity would require a year.

On Google Cloud servers, we estimate that performing the same task 
for m = 20 with 0.1% fidelity using the Schrödinger–Feynman algorithm 
would cost 50 trillion core-hours and consume one petawatt hour of 
energy. To put this in perspective, it took 600 seconds to sample the 
circuit on the quantum processor three million times, where sampling 
time is limited by control hardware communications; in fact, the net 
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Fig. 3 | Control operations for the quantum supremacy circuits. a, Example 
quantum circuit instance used in our experiment. Every cycle includes a layer 
each of single- and two-qubit gates. The single-qubit gates are chosen randomly 
from X Y W{ , , }, where  W X Y= ( + )/ 2  and gates do not repeat sequentially. 
The sequence of two-qubit gates is chosen according to a tiling pattern, 
coupling each qubit sequentially to its four nearest-neighbour qubits. The 

couplers are divided into four subsets (ABCD), each of which is executed 
simultaneously across the entire array corresponding to shaded colours. Here 
we show an intractable sequence (repeat ABCDCDAB); we also use different 
coupler subsets along with a simplifiable sequence (repeat EFGHEFGH, not 
shown) that can be simulated on a classical computer. b, Waveform of control 
signals for single- and two-qubit gates.
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What about QAOA?

Kandala et al.,Nature 549, 242 (2017)

Quantum error correction?

Anderson et al., Nat. Phys. 16, 875 (2020) 

What about VQE? What about Phase 
Estimation? The QFT? Etc… etc… 

Motivation



• Real-world quantum computers are subject to errors that only appear in many-
qubit circuits.

• So we cannot accurately predict the success rates of  many-qubit circuits from one-
and two-qubit gate error rates.

• To benchmark a 100-qubit quantum computer we’re going to need some 100 qubit 
benchmarking circuits…

We need holistic benchmarks

See N38.00011 (Jordan Hines).
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• Standard randomized benchmarking (RB) doesn’t scale because it requires gate compilation.

Standard RB: Magesan et al, PRL (2011). Figure from Proctor et al., PRL 100, 032328 (2019).
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I want to test 100 qubits
Try running these depth 

10K+ circuits…Erm… that’s not 
going to work.

But most benchmarks aren’t feasible on 50+ qubits

• Many other benchmarks require exponentially expensive classical computations.
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single-qubit gates chosen randomly from X Y W{ , , } on all qubits, 
followed by two-qubit gates on pairs of qubits. The sequences of gates 
which form the ‘supremacy circuits’ are designed to minimize the circuit 
depth required to create a highly entangled state, which is needed for 
computational complexity and classical hardness.

Although we cannot compute FXEB in the supremacy regime, we can 
estimate it using three variations to reduce the complexity of the circuits. 
In ‘patch circuits’, we remove a slice of two-qubit gates (a small fraction 
of the total number of two-qubit gates), splitting the circuit into two 
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the total fidelity as the product of the patch fidelities, each of which can 
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initial two-qubit gates along the slice, allowing for entanglement 
between patches, which more closely mimics the full experiment while 
still maintaining simulation feasibility. Finally, we can also run full 
‘verification circuits’, with the same gate counts as our supremacy cir-
cuits, but with a different pattern for the sequence of two-qubit gates, 
which is much easier to simulate classically (see also Supplementary 
Information). Comparison between these three variations allows us to 
track the system fidelity as we approach the supremacy regime.

We first check that the patch and elided versions of the verification 
circuits produce the same fidelity as the full verification circuits up to 
53 qubits, as shown in Fig. 4a. For each data point, we typically collect 
Ns = 5 × 106 total samples over ten circuit instances, where instances 
differ only in the choices of single-qubit gates in each cycle. We also 
show predicted FXEB values, computed by multiplying the no-error prob-
abilities of single- and two-qubit gates and measurement (see also Sup-
plementary Information). The predicted, patch and elided fidelities all 
show good agreement with the fidelities of the corresponding full cir-
cuits, despite the vast differences in computational complexity and 
entanglement. This gives us confidence that elided circuits can be used 
to accurately estimate the fidelity of more-complex circuits.

The largest circuits for which the fidelity can still be directly verified 
have 53 qubits and a simplified gate arrangement. Performing random 
circuit sampling on these at 0.8% fidelity takes one million cores 130 
seconds, corresponding to a million-fold speedup of the quantum pro-
cessor relative to a single core.

We proceed now to benchmark our computationally most difficult 
circuits, which are simply a rearrangement of the two-qubit gates. In 
Fig. 4b, we show the measured FXEB for 53-qubit patch and elided ver-
sions of the full supremacy circuits with increasing depth. For the larg-
est circuit with 53 qubits and 20 cycles, we collected Ns = 30 × 106 samples 
over ten circuit instances, obtaining F = (2.24 ±0.21) × 10XEB

−3  for the 
elided circuits. With 5σ confidence, we assert that the average fidelity 

of running these circuits on the quantum processor is greater than at 
least 0.1%. We expect that the full data for Fig. 4b should have similar 
fidelities, but since the simulation times (red numbers) take too long to 
check, we have archived the data (see ‘Data availability’ section). The 
data is thus in the quantum supremacy regime.

The classical computational cost
We simulate the quantum circuits used in the experiment on classical 
computers for two purposes: (1) verifying our quantum processor and 
benchmarking methods by computing FXEB where possible using sim-
plifiable circuits (Fig. 4a), and (2) estimating FXEB as well as the classical 
cost of sampling our hardest circuits (Fig. 4b). Up to 43 qubits, we use 
a Schrödinger algorithm, which simulates the evolution of the full quan-
tum state; the Jülich supercomputer (with 100,000 cores, 250 terabytes) 
runs the largest cases. Above this size, there is not enough random access 
memory (RAM) to store the quantum state42. For larger qubit numbers, 
we use a hybrid Schrödinger–Feynman algorithm43 running on Google 
data centres to compute the amplitudes of individual bitstrings. This 
algorithm breaks the circuit up into two patches of qubits and efficiently 
simulates each patch using a Schrödinger method, before connecting 
them using an approach reminiscent of the Feynman path-integral. 
Although it is more memory-efficient, the Schrödinger–Feynman algo-
rithm becomes exponentially more computationally expensive with 
increasing circuit depth owing to the exponential growth of paths with 
the number of gates connecting the patches.

To estimate the classical computational cost of the supremacy circuits 
(grey numbers in Fig. 4b), we ran portions of the quantum circuit simu-
lation on both the Summit supercomputer as well as on Google clusters 
and extrapolated to the full cost. In this extrapolation, we account for 
the computation cost of sampling by scaling the verification cost with 
FXEB, for example43,44, a 0.1% fidelity decreases the cost by about 1,000. 
On the Summit supercomputer, which is currently the most powerful 
in the world, we used a method inspired by Feynman path-integrals that 
is most efficient at low depth44–47. At m = 20 the tensors do not reason-
ably fit into node memory, so we can only measure runtimes up to m = 14, 
for which we estimate that sampling three million bitstrings with 1% 
fidelity would require a year.

On Google Cloud servers, we estimate that performing the same task 
for m = 20 with 0.1% fidelity using the Schrödinger–Feynman algorithm 
would cost 50 trillion core-hours and consume one petawatt hour of 
energy. To put this in perspective, it took 600 seconds to sample the 
circuit on the quantum processor three million times, where sampling 
time is limited by control hardware communications; in fact, the net 
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Fig. 3 | Control operations for the quantum supremacy circuits. a, Example 
quantum circuit instance used in our experiment. Every cycle includes a layer 
each of single- and two-qubit gates. The single-qubit gates are chosen randomly 
from X Y W{ , , }, where  W X Y= ( + )/ 2  and gates do not repeat sequentially. 
The sequence of two-qubit gates is chosen according to a tiling pattern, 
coupling each qubit sequentially to its four nearest-neighbour qubits. The 

couplers are divided into four subsets (ABCD), each of which is executed 
simultaneously across the entire array corresponding to shaded colours. Here 
we show an intractable sequence (repeat ABCDCDAB); we also use different 
coupler subsets along with a simplifiable sequence (repeat EFGHEFGH, not 
shown) that can be simulated on a classical computer. b, Waveform of control 
signals for single- and two-qubit gates.
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Let me simulate what you 
should have got. 54 qubits 
you say? That’ll take me 
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Lubinski et al., arXiv:2110.03137



• They can be used to map out a device’s performance as a 
function of  circuit features, such as width and depth.2

• But generating these performance plots involves running 
a lot of  circuits… is all this data really necessary?

Scalable benchmarking using mirror circuits

• Mirror circuits1 are a general technique for constructing scalable benchmarks
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Randomized benchmarking using randomized mirror circuits 

• Randomized mirror circuits1 can be used 
to estimate average gate error rates, like 
traditional randomized benchmarking.2

• We compute each circuit’s effective 
polarization:

• where hk is the rate that the output bit-
string is a Hamming distance of  k from 
the “target” bit-string. 

• We fit the mean S as function of  depth d
to:

S̄d = Apd
<latexit sha1_base64="ndCjNJGZ8qCP1PLBquwYp2wzK58=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0mqoBeh6sVjRfsBbQybzbZdutmE3U2hhP4TLx4U8eo/8ea/cdvmoK0PBh7vzTAzL0g4U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWcSkIbJOaxbAdYUc4EbWimOW0nkuIo4LQVDG+nfmtEpWKxeNTjhHoR7gvWYwRrI/m23Q2wzB4mfoiu0HXyFPp22ak4M6Bl4uakDDnqvv3VDWOSRlRowrFSHddJtJdhqRnhdFLqpoommAxxn3YMFTiiystml0/QiVFC1IulKaHRTP09keFIqXEUmM4I64Fa9Kbif14n1b1LL2MiSTUVZL6ol3KkYzSNAYVMUqL52BBMJDO3IjLAEhNtwiqZENzFl5dJs1pxzyrV+/Ny7SaPowhHcAyn4MIF1OAO6tAAAiN4hld4szLrxXq3PuatBSufOYQ/sD5/AG0hkt4=</latexit>

1T. Proctor et al. arXiv:2112.09853 (2021), 2Magesan et al, PRL (2011) 3Proctor et al, PRL (2019) 



• Randomized mirror circuits1 can be used 
to estimate average gate error rates, like 
traditional randomized benchmarking.2

• This method is a huge improvement on 
traditional RB.2-3

• Traditional RB scales only to ~4-5 qubits.

• RB with randomized mirror circuits scales 
to 100s or 1000s of  qubits!

2Magesan et al, PRL (2011) 3Proctor et al, PRL (2019) 

Randomized benchmarking using randomized mirror circuits 



Benchmarking 225 qubits using 1000s of circuits (simulation)
Average Effective Polarization

Simulation details
• 225 qubits connected in a 15 by 15 lattice.
• Clifford gates subject to Pauli stochastic errors.
• ~0.1% error for 1-qubit gates.
• ~1% error for 2-qubit gates.
• ~0.5% readout error on each qubit.



Benchmarking 225 qubits using 1000s of circuits (simulation)

For each width, fit data to

At each width and depth 
we ran 30 circuits, and this 

is their mean S.

Average Effective Polarization

There is a total of  4230 circuits.
r = (4n � 1)(1� p)/4n
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S̄d = Apd
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Benchmarking 225 qubits using 1000s of circuits (simulation)

At each width and depth 
we ran 30 circuits, and this 

is their mean S.

There is a total of  4230 circuits.



Benchmarking 225 qubits with only 25 circuits (simulation)

Let’s sample 25 of  these circuits – to simulate 
running a very streamlined experiment.

• How can we learn the full 
performance map from this small 
set of  data?

• We use a few-parameter predictive 
model, and fit it to the data.

• What’s a good model?

• Each data point is a sample from an 
unknown and (w, d) dependent 
distribution over [0, 1].

• We model this distribution by a beta 
distribution with a (w, d) dependent 
mean and variance.

• We pick a simple few-parameter 
function of  w and d for the mean 
and variance.

Technical note: effective polarizations are not bounded below by zero, so we rescale the beta distribution.



Benchmarking 225 qubits with only 25 circuits (simulation)

Heatmap is the predicted average 
effective polarization as a continuous 

function of  (width, depth).

• How can we learn the full 
performance map from this small 
set of  data?

• We use a few-parameter predictive 
model, and fit it to the data (using 
maximum likelihood estimation).

•



Benchmarking 225 qubits with only 25 circuits (simulation)

Predictions of  model trained on just 25 
circuits are in very close agreement to the 
observed average effective polarizations 

calculated using all 4230 circuits.

Heatmap is the predicted average 
effective polarization as a continuous 

function of  (width, depth).

• How can we learn the full 
performance map from this small 
set of  data?

• We use a few-parameter predictive 
model, and fit it to the data (using 
maximum likelihood estimation).

•



Benchmarking 225 qubits with only 25 circuits (simulation)

We’ve learnt a good 
approximation to the per-layer 

error rate error as function of  the 
number of  qubits – using data 

from only 25 circuit!

Heatmap is the predicted average 
effective polarization as a continuous 

function of  (width, depth).

• How can we learn the full 
performance map from this small 
set of  data?

• We use a few-parameter predictive 
model, and fit it to the data (using 
maximum likelihood estimation).

•



• We need scalable and efficient holistic benchmarks for quantum computers.
• Many popular benchmarks require exponentially expensive classical computation

• Circuit mirroring can convert an arbitrary circuit into an efficiently verifiable circuit. It enables:
• Scalable benchmarks built from any circuits, including algorithm circuits (see Stefan Seritan’s talk, N38.00008).

• Scalable randomized benchmarking of  Clifford gates (this talk) and universal gate sets (see Jordan Hines’ talk,  N38.00011).

• Scalable algorithm verification (see Mohan Sarovar’s talk, N38.00010).

Circuit mirroring: T. Proctor et al. Nature Physics 18, 75-79 (2022). 
Randomized benchmarking using mirror circuits: T. Proctor et al. arXiv:2112.09853 (2021).

Efficient extrapolation of  benchmarking data: look out for an arXiv posting soon-ish.

Summary

Where can I read more?

• We can benchmark 100+ qubits using only a handful of  randomized 
mirror circuits.

• Techniques for interpolating data from general benchmarking circuits 
would be a really powerful tool for super-efficient benchmarking. 



The Team

Kenneth Rudinger, Stefan Seritan, Daniel Hothem, Jordan Hines, Thomas Catanach, Robin Blume-
Kohout and Kevin Young 

Thanks!

Many thanks to IBM Quantum Experience for access to their quantum computing platform.

Get Your Capabilities Checked Now!

If  you’d like to run mirror circuit benchmarks to test a processor's capabilities:

• Get in contact with me (tjproct@sandia.gov) or anyone at Sandia’s QPL.

• Code for running experiments like these is in pyGSTi (www.pygsti.info).
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