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Motivation

Want to buy my 100 qubit

quantum computer? o . .
What applications or algorithms can it run?

o Can it run random circuit sampling? \
N What about QAOA?
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Quantum error correction?

: ::i —:Q: :E%‘ % Q6 [0) f

. :Zi :_% % . {%‘ Kandala et al.,Nature 549, 242 (2017)

. —IL;' ] ,7RLDj S What about VQE? What about Phase
o—p ] - U ) Estimation? The QFT? Etc... etc...
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We need holistic benchmarks

* Real-world quantum computers are subject to errors that only appear in many-

qubit circuits.
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See N38.00011 (Jordan Hines). T. Proctor et al. Nature Physics 18, 75-79 (2022)

* So we cannot accurately predict the success rates of many-qubit circuits from one-
and two-qubit gate error rates.

* To benchmark a 100-qubit quantum computer we’re going to need some 100 qubit
benchmarking circuits. ..



But most benchmarks aren’t feasible on 50+ qubits

* Standard randomized benchmarking (RB) doesn’t scale because it requires gate compilation.

| want to test 100 qubits
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Standard RB: Magesan et al, PRL (2011). Figure from Proctor et al., PRL 100, 032328 (2019).

* Many other benchmarks require exponentially expensive classical computations.

Algorithmic benchmarks

Cross-entropy benchmarking
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Scalable benchmarking using mirror circuits
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Thev can be used to map out a device’s performance as a
y

function of circuit features, such as width and depth.

But generating these performance plots involves running

a lot of circuits... is all this data really necessary?

o ¥ O Z &

Benchmark Depth

o ¥ O &

Each square
summarizes data
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. . 4-
10s of circuits mmp N
at that shape.

'T. Proctor et al. Nature Physics 18, 75-79 (2022), 2Blume-Kohout and Young Quantum 4, 362 (2020)

Mirror circuits! are a general technique for constructing scalable benchmarks
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Randomized benchmarking using randomized mirror circuits

e Randomized mirror circuits! can be used
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Randomized benchmarking using randomized mirror circuits

e Randomized mirror circuits! can be used
to estimate average gate error rates, like
traditional randomized benchmarking.?

* This method is a huge improvement on
traditional RB.23

* Traditional RB scales only to ~4-5 qubits.

e RB with randomized mirror circuits scales
to 100s or 1000s of qubits!

2Magesan ¢ a/, PRL (2011) *Proctor et a/, PRL (2019)
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Benchmarking 225 qubits using 1000s of circuits (simulation)

Average Effective Polarization
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* 225 qubits connected in a 15 by 15 lattice.

* Clifford gates subject to Pauli stochastic errors.

* ~0.1% error for 1-qubit gates.

* ~1% error for 2-qubit gates.

* ~0.5% readout error on each qubit.
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Benchmarking 225 qubits using 1000s of circuits (simulation)
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Benchmarking 225 qubits using 1000s of circuits (simulation)

200

150

Circuit Width

50

At each width and depth
we ran 30 circuits, and this
1s their mean S.

There 1s a total of 4230 circuits.
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Circuit Width

Benchmarking 225 qubits with only 25 circuits (simulation)
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Let’s sample 25 of these circuits — to simulate
running a very streamlined experiment.
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Technical note: effective polarizations are not bounded below by zero, so we rescale the beta distribution.

How can we learn the full
performance map from this small
set of data?

We use a few-parameter predictive
model, and fit it to the data.

What’s a good model?

* FEach data point 1s a sample from an
unknown and (», 4) dependent
distribution over [0, 1].

* We model this distribution by a beta
distribution with a (w, d) dependent
mean and variance.

* We pick a simple few-parameter
function of » and 4 for the mean

and variance.



Circuit Width

Benchmarking 225 qubits with only 25 circuits (simulation)

e How can we learn the full
performance map from this small
set of data?

200

* We use a few-parameter predictive
model, and fit 1t to the data (using
maximum likelthood estimation).
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@ Heatmap is the predicted average
etfective polarization as a continuons

function of (width, depth).
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Circuit Width

Benchmarking 225 qubits with only 25 circuits (simulation)
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Predictions of model trained on just 25
circuits are in very close agreement to the
observed average effective polarizations
calculated using all 4230 circuits.
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How can we learn the full
performance map from this small
set of data?

We use a few-parameter predictive
model, and fit 1t to the data (using
maximum likelthood estimation).

@ Heatmap is the predicted average

etfective polarization as a continuons

function of (width, depth).



Circuit Width

Benchmarking 225 qubits with only 25 circuits (simulation)

e How can we learn the full
- performance map from this small
set of data?
60
*  We use a few-parameter predictive
—~ 50 . .
150 S model, and.ﬁt it to the dgta <usmg
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* We need scalable and efficient holistic benchmarks for quantum computers. g% G2 - gn 0™

* Many popular benchmarks require exponentially expensive classical computation

* Circuit mirroring can convert an arbitrary circuit into an efficiently verifiable circuit. It enables:
* Scalable benchmarks built from any circuits, including algorithm circuits (see Stefan Seritan’s talk, N38.00008).
* Scalable randomized benchmarking of Clifford gates (this talk) and universal gate sets (see Jordan Hines’ talk, N38.00011).
* Scalable algorithm verification (see Mohan Sarovar’s talk, N38.00010).
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* We can benchmark 100+ qubits using only a handful of randomized g //
miffor Cifcuits. 150 §20 ,//— Model (Fit to all 4230 circuits)
£ X 40 e Model (Fit to 25 circuits)
. . . . . . § . g Standard RB analysis
* Techniques for interpolating data from general benchmarking circuits 3., N
O

would be a really powertful tool for super-efficient benchmarking;

50

Where can | read more? .

° ° Circuit D1062pth +1 ° °
Circuit mirroring: T. Proctor ef al. Nature Physics 18, 75-79 (2022).
Randomized benchmarking using mirror circuits: T. Proctor ¢f al. arXiv:2112.09853 (2021).

Efficient extrapolation of benchmarking data: look out for an arXiv posting soon-ish.
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Thanks!

Many thanks to IBM Quantum Experience for access to their quantum computing platform.

Get Your Capabilities Checked Now!
If you'd like to run mirror circuit benchmarks to test a processor's capabilities:

* Get in contact with me (tjproct@sandia.gov) or anyone at Sandia’s QPL.

* Code for running experiments like these is in PYGSTL (www.pyosti.info).
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