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Interatomic Potentials as Multi-Scaling
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Preserving accuracy ]
through scales while
becoming computationally
efficient

Need to be cautious of what
is promised with machine
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Accuracy Demands

Training Data Sets for Material Science

 S.P. Ong (UCSD) and group members

generated ‘standardized’ training data for Cu,

Ni, Mo, Li, Si, Ge

» Comparing ML-IAP implemented in
LAMMPS, cost assessed on CPU only

* Go test your method against ours!

https://github.com/materialsvirtuallab/mlearn

10.0

b
o
'l

*Uses a modified
training set

SE (meV/atom)

Test

0.5 A

\5\

*

\
1 o

1
1
1
1
[
®
(BN

| Y
\
!ll
\‘*
Cul"®

o

* ACE
O GAP
$ MTP

@ NNP
QO SNAP
@ qSNAP

U_

10‘
LySOQOI'Skly et a/ npj CompUt Mater7 97 Computational cost (ms/(MD step - atom))

Test error (meV/atom)

20 -
® O Jm =3
‘ [
10~ ' @ I'ndden Iayers [16, 16]
../ (, g ©
Jm =3
54 @ cap °
o wmTP ‘
@ NNP - m
O SNAP / F
® qSN AP 20 polynomial powers
2 e R g
10° 10° 10" 10° 10

Computational cost s/(MD step « atom)

Zuo et. al. J. Phys. Chem. A (2020), 124, 4,



https://github.com/materialsvirtuallab/mlearn

4 ‘ Efficiency Demands

Carbon

« Team from USF, Sandia, NERSC, NVIDIA,
KTH : doi.org/10.1145/3458817.3487400

2021 Gordon Bell Finalist 2020 Gordon Bell Winner

» Uses SNAP ML-IAP for high pressure

 Neural Network based ML-IAP for Water,

Cu

Performance
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 Team from Princeton, Berkeley, LBNL,
IAPCM(Beijing), Peking Univ.:

doi.org/10.1016/j.cpc.2020.107624

*Both heavily rely on
GPU parallelization!

*Both interface with
and run in LAMMPS!

PFLOPS
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https://doi.org/10.1145/3458817.3487400
https://doi.org/10.1016/j.cpc.2020.107624

5 I Accelerating Model Development

. - Try mpi4py, Else Stubbs Read Input File
FitSNAP. Py Breakdown @ E Init Package and Libraries Checks ]

accuracy-cost tradeoff continuum
Object oriented framework for developer

« Python interface for user ease of use

ease of use asok =) Scrape o> Scrape — Scrape
extended xyz Dlvvy up configs (P.) Node paral]ehsm for

Store atom positions, single or multiple fits
ground truth values

Calculator
Call LAMMPS (P.)
Collect Descriptors

* ML-IAP can be ‘overlapped’ with other physical
models (coulombic, magnetic spins, ion core
repuIS|on)

Store fitted
coeffiecients, Solver
970215, 0.0, 0.0],[ 0.0, 2.1399 65967, 0. ey

errors. Apply group weights
Scikit(P.), Cython(P.)

; (
" : "angstrom”, Energ';_.-E le": "electronvolt","StressStyle": "kB" see
L

.66761, @.00398],[ 6.66761, 752.92696

*Auto conversion from VASP OUTCAR coming soon!




6 I Descriptors

LAMMPS Breakdown

e (Calculator class calls LAMMPS to convert

atomic coordinates into descriptors. —
« Thread parallel implementation via Mpi4Py - --

and LAMMPS python library interface. _’ _’
Scrape

Behler-Parrinello (2,3) _ PIPS (n*) Scrape _ = SCrape um OCIA
% ACE () proiection P22PMD (2,3) permutation Divvy up configs (P.) Node parallelism for
MTP (n+) PrOjeciion GTTP (2.3) invariant W UA Store atom positions, single or multiple fits
SNAP (4) T syar!nur'rnnégry palynomials dima,ﬁdej ground truth values
. h , .
8 limit /" ‘/S AP functions histograms \warfwiﬁﬁ&tem C
- s OO ® OO-®_ OO ®
smooth dEnSi'[y \ [a'-feragej digﬂtarf.lecdeﬁ PIV (2) @ @ @ @ @
e correlation - orned O (2) Calculator z Calculator prad Calculator
Wavelets (3) - Call LAMMPS (P») Nodf parallelh_srin ftgr
NICE {n*) { pectral FP (n) Collect DeSCﬁptorS single or mu tlp e 11ts
. SPRINT (n)
».. | sorted C
. Bigenvalues
! = L ]
ooe
symmetriz Solver
local field Apply group weights
Scikit(P.), Cython(P.)
symmetry
other relatio
family of fea
named features (body order) ]l I’
2,3,4: radial, angular, dihedrals |
n: n-body Cartesian

n*: complete n-body linear basis coordinates Musil et. al. Chem. Rev. (2021) 121,



7 I Regression

SNAP Nodel Form . i R T

ESNAP = Uy + Z [aﬁl)(Bk — B ) + a:(n)(

min(|lw - Da —T||% — y,lla|l') ."

p Scrape Scrape
W . D . Set Of T : D FT Dclfg'y up configs (P.) h N%I;li I?aral]ehsm for h
. . . . Store atom positions, single or multiple fits
Weight descriptors training

e | C
 Dis a N*M matrix

Calculator z (l\llallculaglor <_ Calculator
. . . ode parallelism for
N Scales with number of training points Collect Descriptory | single or multiple it

M Scales with the descriptor expansion

N>>M, can exceed local memory -£ _’ :

Solver == Solver -— Solver
Apply group weights Distributed Irllemor_y

1l h ) regression solver via
Scikit(P:), Cython(P.) Scal APACK (QR)

*Coupling to AutoDiff and Pytorch coming soon!
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Parallelization E
Linear SVD = Linear QR +
- uadratic SVD _* uadratic QR ¢
« Cython backend to Solver class allow for % 10000 Lt )
distributed memory regression —» QR p 1000 ) AR " |
Decomposition via ScaLAPACK . L
« Each nodes’ object handles its own set of E 100 7 fén S
training Data — ML-IAP fitting only limited ‘Tg 10 [t I IR
by resource availability = 0.001 0.01 0.1 1 10
Matrix Size (N*M) per Node (x108)
* Points are increasing descriptor basis, c 100
Quadratic results in order of magnitude % ¢
larger M sizes g 10
= |
€ N*M matrix exceeds the 128Gb of local o ! |
shared memory, only possible with a distributed = 0.1 .
solver. = \ |
= 0_03001. ....6..01. 01 1 . 10 N
* Gradient descent solvers are implemented, - Matrix Size (N*M) per Node (x109) |



9 I Potpourri — Training Sets

Model form - Training Pairing

 SNAP models are really only tied to
bispectrum components as descriptors,

model form is flexible

 How complex of a model is needed to
capture the training set? Linear? Deep

Neural Network?

* Accuracy of all model forms saturates,
true of simple linear and NN models!

 Observed for user constructed and
automated training set generation!

+Montes, Pereyra arXiv:2201.09829
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https://arxiv.org/abs/2201.09829

0 | Software Development https://github.com/FitSNAP/FitSNAP

Pull requests Issues Marketplace Explore

¢ pip inSta” ﬁtsnap H FitSNAP |/ FitSNAP  Public <% Pin @ Unwatch 4 - Y Fork 29 Starred 56 - I
i

or
git clone https://...

¢» Code () Issues 7 11 Pull requasts 2 ) Discussions (*) Actions fH Projects 00 wiki (1) Sacurity

F master - ¥ 4 branches T 0tags Go to file Add file = Code = About =

Software for generating SNAP machine-
mitwood Merge pull request #82 from ... ..  dc71517 4 hours ago %) 377 commits learning interatomic potentials

° Open iSSUGS’ requeSt features’ and B github/workflows Change tests to only run on PR to master 3 days ago M Readme

. . . it

d ISCU SS Wlth developerS/USe rS Vla i m docs Merge remote-tracking branch ‘origin/master... 17 months ago # 56 stars
= Changed names of Standard Fe pot names 1o ... 4 days ago

GitHub [ o] °

4 watching
B fitsnap3 Small tweaks and a commit to check 22 haours aga 29 forks
| tests Small tweaks and a commit to check 22 hours aga
Releases
* Example cases roug hly charlessievers Changed names of Standard Fe pot names to be mo... - 4 days ago ¥%) History o e e
follow our publications;
Fe: SNAP + Magnetic Spin

Create a new release

B Fe_Linear NPJZ021 Changed names of Standard Fe pot names to be mo... 4 days ago Packages
InP: Explicit Multi-Element No packages publshes
] B InP_JPCAZ2020 Adding detailed error files with filenames, only Ta ex... 9 months ago Publish your first package
Descriptors
. Bm Ta_linear JCP2014 Adding detailed error files with filenames, only Ta ex... 9 months ago )
Ta_PACE: Atomic Cluster . Contributors @

- . Ta_PACE small changes related to additional solvers. Input de... 15 days ago e -
Expansion Model HT@IOM®
Et B Ta_Quadratic_JCP2018 Adding detailed error files with filenames, only Ta ex... 9 months ago

C.
B Taxyz Fix transpose XYZ scraper bug and add XYZ scraper... 3 months ago Languages
fm wWBe_PRB2019 Adding detailed error files with filenames, only Ta ex... 9 months ago ® Fython 22.0% Cython 8.2%

Other 1.0%



https://github.com/FitSNAP/FitSNAP

Conclusions and Path Forward

The EXAALT project is
ensuring Exascale-ready
MD software beyond the
length, time-scales of
standard MD

Links and References:
https://github.com/FitSNAP/FitSNA

httos:/ll?github.com/materialsvirtuallab/mlearn I
Zuo et. al. J. Phys. Chem. A (2020), 124, 4,
731§gégorskiy et. al. npj Comput Mater

7,97 (2020 5rg/10.1145/3458817.3487

Number of Particles (N)

*  While harder to quantify,

the fidelity of our MD o 30Lorg/10.1016/.cpc.2020.107
simulations needs to be a e Musil et a@géhem I'\;ev (2(.)21).121 |
key consideration at the Simulated Time (t) 9759-9815 |
Exascale Accuracy
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