This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

“Smarter” NICs for faster molecular dynamics:
a case study

Sara Karamati*, Clayton Hughes', K. Scott Hemmert', Ryan E. Grant’, W. Whit Schonbein,
Scott Levy, Thomas M. Conte*, Jeffrey Young*, Richard W. Vuduc*
*Georgia Institute of Technology, Atlanta, Georgia, USA
fSandia National Laboratories, Albuquerque, New Mexico, USA
J:Queen’s University, Kingston, Ontario, Canada
*Email: {skaramati,jyoung9,richie} @ gatech.edu

Abstract—This work aims to evaluate the possible benefits of
using a “smart” network interface card (smartNIC) as a compute
accelerator for HPC applications, using the example of the
MiniMD molecular dynamics proxy application. The accelerator
is NVIDIA’s BlueField-2 card, which includes an 8-core Arm
processor along with a small amount of DRAM and storage.
We test the networking and data movement performance of
these cards compared to a standard Intel server host. Guided by
microbenchmarks, we identify two distinct classes of computation
in MiniMD, namely core computation and maintenance computa-
tion. As these computations are tightly coupled in the original im-
plementation of MiniMD, we restructure the algorithm to weaken
this coupling, thereby making it possible to move maintenance
computation to the BlueField card and overlap computation with
communication. We evaluate our implementation on a cluster
consisting of 16 dual-socket Intel E5-2697A host nodes with one
BlueField-2 per host-node. Our results show that while the overall
compute performance of these devices is limited, using them with
a modified MiniMD algorithm allows for up to 20% speedup over
the host CPU baseline with no loss in simulation accuracy.

I. INTRODUCTION

SmartNICs are network interface cards with extended com-
putational capabilities (see the survey by Grant et al. [1] and
our summary in Section [[I-A). There is growing agreement
that the ability to do on-NIC compute will have a critical
enabling role in cloud and datacenter architectures, especially
in tackling functions such as networking control, storage
management, and security. On-NIC compute capabilities might
take the form of special-function ASICs or FPGAs, but in this
paper, we are especially interested in the case of embedded
general-purpose multicore processors and memories. We focus
on the NVIDIA (née Mellanox) BlueField smartNIC designs,
with experiments conducted specifically on the BlueField-2
implementation.

Having a flexible compute unit close to both the host
CPU as well as the network infrastructure raises a number
of questions about the role they can play in other classes of
applications, specifically for our study in high-performance
computing (HPC). While exploratory work along these lines
exists, especially at the middleware layer (Section [[[-A)),
applications-level work remains nascent. Thus, in this paper
we investigate the potential of smartNICs as a de facto
compute accelerator for HPC applications. That is, are there
other possible scenarios to use smartNICs besides previously

assumed application domains like networking control, storage
management, or security?

We consider this question using the case study of MiniMD,
a molecular dynamics (MD) simulation application. We are
motivated by MiniMD because it is simple enough to study
in detail while also having challenging characteristics: the
simulation behavior and its communication to computation
ratio can vary with different input and configuration-parameter
values, including problem size, the number of processors,
and the re-neighboring frequency, among others, making it an
excellent choice to examine the new hardware in some detail.

There are three key challenges in achieving high efficiency
in porting MiniMD to BlueField. First, there is a sequen-
tial dependence between the core parts of each iteration of
MiniMD, making it difficult to offload communication- or
computation-related routines to BlueField while maintaining
fully overlapped concurrent execution on host and BlueField
cores. Second, for larger problem sizes, MiniMD’s commu-
nication time is small compared to its computation time,
making it nontrivial to extract reasonable performance by
hiding communication load. Third, our experiments with the
OSU MPI microbenchmark in Section [III| show that BlueField
does not outperform the latency and bandwidth of host-to-host
communication due to its slow CPU.

Considering that the original MiniMD algorithm relies on an
expert-tuned parameter-based heuristic to periodically rebuild
and maintain certain internal data structures, we develop an
alternative heuristic that can relax the sequential dependence of
operations in MiniMD. This change provides us an opportunity
to improve the performance of the application with the help
of BlueField. This approach demonstrates an instance of
how platform characteristics can inform a redesign of the
application’s algorithm and implementation.

We evaluate our method experimentally against the MiniMD
baseline on the Thor cluster at the HPC Advisory Council. Our
contributions are:

o We conduct performance analysis to understand the op-
portunities and limitations presented by the BlueField for
potential HPC applications.

o We evaluate strategies for partitioning communication-
and compute-oriented tasks for the MiniMD application.
The potential offloading scenarios considered are: 1)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-2433C

communication-heavy routines offloaded to the Blue-
Field, and 2) computation-heavy routines offloaded to
BlueField. We argue that the former is “natural” while the
latter would be “unexpected” due to the relatively weak
performance of BlueField cores. Nevertheless, we show,
surprisingly, that the latter can outperform the former.

+« We implement new heuristics and restructure the algo-
rithm to realize the potential of in-network heterogeneous
computing by decoupling the infrequent periodic update
heuristic of the application from the algorithm’s main
loop.

o We evaluate the efficiency of our proposed offloading
method and show that the performance can be boosted up
to 20% above baseline application performance. More-
over, it appears that this increase in performance is
possible with only a modest increase in node-level power
cost (6% to 13% increase in power as a rough estimate).
We also construct performance models to estimate the
theoretical maximum performance improvement possible
by offloading all communication routines to BlueField to
explain our results.

Taken together, these findings constitute a positive result
indicating the potential of smartNIC co-processing and pave
the way for future studies that consider other computational
motifs in HPC, as noted in Section

II. BACKGROUND

Two pieces of background are helpful for understanding
our work: (1) a discussion of the BlueField and related work,
which helps to contextualize our study (Section[[I-A)) and (2) a
basic description of how our benchmark application, MiniMD,
works (Section [II-B)).

A. BlueField Data Processing Units

The class of smartNIC platforms we are targeting imple-
ment their on-board “smarts” using general-purpose multicore
processors and private (to the NIC) memories. This class
sometimes goes by the moniker of data processing units,
or DPUs. The specific DPU of interest in our project is
the NVIDIA (née Mellanox) BlueField, which uses an Arm
multicore processor.

DPUs are distinct from other smartNIC platforms, which
might instead rely on packet-processing ASICs or FPGAs [2]-
[7]; for an explanation of these design choices, see the excel-
lent survey by Grant et al., which catalogs the challenges and
opportunities for smartNICs broadly [1]]. In our project, we are
asking what implications DPUs have for the implementation
of high-performance scientific computing algorithms.

By way of contrast, another natural way to use smartNICs is
to offload specific middleware operations. A compelling exam-
ple for BlueField is BluesMPI, which implements MPI’s all-
to-all exchange for BlueField [8]]. The designers of BluesMPI
identify the most promising regime for acceleration as being
medium to large messages in a nonblocking all-to-all. They
show that their drop-in all-to-all replacement can reduce the
bottleneck of large three-dimensional fast Fourier transforms.

This demonstration shows a path of least resistance to acceler-
ating real HPC applications with minimal or no changes, since
any changes are isolated within the middleware layer.

For more general applications, there are two basic ap-
proaches to using the computational cores of a DPU: an
in-pipeline or “on-path” model, in which we inject custom
computation on message data between their receipt from the
network and delivery to the host, versus an asynchronous
or “off-path” model, in which we run arbitrary computation
concurrently with both communication and any on-host com-
putation. Earlier work in INCA [9] provides an example of
a hybrid approach by implementing asynchronous "off-path
style" compute operations on "on-path" networking hardware.

Liu et al. observe that the latency of RDMA primitives
exposed in off-path SmartNICs can take twice as long as
that of native blocking DMA in on-path SmartNICs [10].
Furthermore, by fully utilizing PCle bandwidth, non-blocking
DMA primitives of on-path SmartNICs perform even better
than blocking ones, regardless of message size. Liu et al. also
show that the hardware traffic manager in on-path SmartNICs
provides an additional performance advantage by reducing
the synchronization cost through a shared queue abstraction
when multiple cores need to pull incoming packets from
this queue. Based on these experimental observations, they
propose an actor-based framework for offloading distributed
applications onto SmartNICs, showing that it decreases host
CPU utilization and lowers application latency for on-path
SmartNICs.

Another recent study of on-path operations on BlueField
provides a detailed characterization of the potential to overlap
computation and communication [[11]. One finding is that the
BlueField’s processor is weak enough that, unlike typical x86
host cores, using all BlueField cores cannot fully saturate
available link bandwidth in a 100 Gbps network, maxing out
instead at around 60%. And even at that level, only about 70%
or so of the processor’s compute capability is available for in-
pipeline operations. But a different finding is that the BlueField
cores can be competitive or better than x86 processors of
just one or two generations earlier. In particular, vectorizable
math operations do better than expected, opening an avenue
to consider scientific computing applications.

One such application is the PENNANT proxy app, which
Williams et al. study on both first and second generation
BlueField DPUs [12]. Their results are pessimistic, as they
were unable to achieve any appreciable speedups. However,
they also deliberately limit their code transformations to
the kind of incremental offloading one might expect in a
first-attempt to exploit DPU processing capabilities. They
leave open the possibility of more aggressive algorithmic and
software restructuring, which might yield better results. Our
project pursues such restructuring transformations, with this
paper focused on MiniMD.

Jain et al. explore offloading different phases of deep learn-
ing training, i.e., data augmentation, model validation, or both,
to Bluefield-2 DPUs [13]]. Their proposed offloading schemes
can speed up training by up to 15%. However, they did not

find a single offloading scheme that could optimally speed up
training all the different models in their study. Specifically,
the performance gain is sensitive to the amount of overlap
in computation that the offloading scheme provides between
the host and SmartNICs for the model under training. This
observation illustrates the difficulty of attaining performance
improvements from off-path techniques.

One significant challenge to aggressive restructuring is
programmability. Consequently, there exist complementary
lines of research and development that seek to make open,
portable interfaces for smartNICs and DPUs. An example is
OpenSNAPI [14]]. While its use is outside the current scope
of our project, we do view OpenSNAPI as a critical enabling
technology that could simplify future work like ours.

B. MiniMD

Fig. 1. Illustration of a sample MiniMD simulation in two dimensional space;
yellow dots are particles, the dotted lines indicate the boundaries of the spatial
domain of each processor (assuming 4 processors working on the problem);
circles A and C contain particles within cut-off distance r.; circles B and D
contain particles within an extra buffer distance A. Circle D contains particles
owned by a neighboring processor and these particles are in the halo region
of the proc 1 (gray box); Particle information within the halo region of proc
1 must be communicated to proc 1 at every iteration.

MiniMD is a benchmark from the Mantevo benchmark suite
that implements a molecular dynamics (MD) simulation [/15].
It is a proxy application for the LAMMPS molecular dynamics
codebase. Both LAMMPS and MiniMD provide simulation
capabilities for particles in solid, liquid, or gaseous media,
but MiniMD only supports modeling the effects of a Lennard-
Jones (LJ) potential between pairs of molecules and many-
body interactions via the Embedded Atom Model (EAM). By
contrast, the full LAMMPS framework provides nine types
of pairwise potential interactions along with a much larger
number of other features.

Simulations using MiniMD may be configured using a
variety of parameters, the most important of which are number
of atoms (/V), density of particles, skin distance, cut-off
distance, starting temperature, and the frequency of neighbor
list rebuilds.

Figure [2] shows one iteration of MiniMD. The core algo-
rithm consists of computing the force exerted on each atom

A Each processor updates X and V for
InitialIntegrate() fleg T
Neighbor
build iteration?
les
Each processor moves necessary atoms
exchange() to their new processors
Each processor sends the information
borders() of boundary atoms surrounding No
. Each processor reorders arrays X and
sort() (if needed) V based on atoms' spatial closeness
. : Each processor builds neighbor lists
neighbor_build() of interaction pairs
: Updated x are communicated to the |
communicate () surrounding processors
Each processor computes forces on

force_compute() s BErs

Each processor updates V for its

FinalIntegrate() atoms

Fig. 2. MiniMD flow diagram.

from those within a fixed neighborhood (i.e., ForceCom-
pute()), followed by updating the position and velocity of
atoms due to that force (i.e., Initiallntegrate() and Finallnte-
grate()). Furthermore, for each atom, the algorithm maintains
a neighbor list (NeighborBuild()). This list consists of all the
atoms within a cut-off distance ., plus additional atoms within
an extra buffer distance (also known as the skin distance)
A. To save computation time, the algorithm only updates
the neighbor lists every n-th iteration, where n is the re-
neighboring frequency, specified as an input to the algorithm
(Fig. 1.

Every iteration, each atom interacts only with neighbors that
are less than r. away. To be able to reduce the neighbor list
update frequency, the algorithm uses the atoms tracked in the
skin of each atom as the atoms move after each time step. The
MiniMD proxy uses the same list in subsequent iterations until
the next iteration in which the neighbor lists must be updated.
Additionally, the atoms within a processor’s subdomain may
be reordered in memory at regular intervals in order to improve
cache performance. (This reordering is implemented using a
sorting operation.)

MiniMD exploits parallelism by dividing the spatial domain
of the simulation into partitions and assigning each partition
to a processor. In addition, each processor designates part of
its partition as its boundary region, which is also decided by
the skin distance. The main iteration consists of the following
communication routines to coordinate between processors:

« exchange(), where each processor checks the location of
its atoms, sends out the information of the atoms that have
moved outside its partition to a neighboring processor,
and receives the information for atoms that have entered
its partition. This routine is invoked only when neighbor

lists are updated.

« border(), where each processor creates a list of atoms
in its boundary region that may fall in the neighbor lists
of the atoms in the surrounding partitions. Additionally,
border() sends out the list of these atoms and their
positions to the corresponding adjacent processors. This
routine is invoked only when neighbor lists are updated.

o communicate(), where the updated positions of atoms
in the boundary region are sent to the corresponding
processors. This information is similar to what border()
sends out to the adjacent processors. This routine is
invoked during the iterations where neighbor list is not
being updated.

III. MOTIVATING EXPERIMENTS

We first evaluate the BlueField-2 using the OSU Mi-
crobenchmarks suite (OSU version: 5.7.0) [[16] and the “off-
the-shelf”” version of MiniMD to understand the opportunities
and limitations presented by the BlueField DPU and an
unmodified baseline application. These findings then inform
our approach of Section

A. Experimental setup

Our experimental platform is the Thor cluster within
the HPC-AI Advisory Council Testbed, which contains
MBF2H516A-EENOT Full-Height Half-Length (FHHL)
DPUs Thor is a 32-node cluster containing dual-socket
Intel Xeon 16-core CPUs running at 2.60 GHz (Host) and
a BlueField data processing unit. Each DPU combines the
ConnectX-6 Dx HDR100 100 Gbps InfiniBand/VPI adapters
with 8 ARMv8 A72 cores operating at 2.5 GHz. Additional
configuration details can be found in Table [l

We use NVIDIA’s HPC-X Rev 2.8.1 Software Toolkit,
including OpenMPI version 4.1.2al to build and run the
codes on hosts and BlueField devices [[17]]. For all of the
motivating experiments that appear in this section, unless
otherwise specified, we assign one MPI process to an entire
node. This configuration is in contrast to assigning each core
to a different MPI process or enabling multithreading within
a node/socket, which we consider in Section

All performance metrics are collected using MiniMD’s
default configuration, which employs the Lennard-Jones po-
tential. In our experiments, we vary the number of atoms and
re-neighboring frequency. Each experiment is run for 1,000
iterations.

B. OSU Microbenchmarks

We ran microbenchmarks designed to assess the perfor-
mance of the elements of MPI-based applications that occur
in MiniMD:

« Point-to-point latency (osu_latency).

« Point-to-point bandwidth (osu_bw).

« Point-to-point multi-pair bandwidth and message rate

(osu_mbw_mr).

ISee: https://www.hpcadvisorycouncil.com/cluster_center.php

Normalized OSU MPI Bandwidth

Normalized Bandwidth

2‘0 2‘5 2'10 2'15 2'20
Data Size

Fig. 3. OSU MPI bandwidth

o Collective allgather latency (osu_allgather).

For the first three tests, we compare the network perfor-
mance for three different arrangements:

o Internode communication between hosts (Host-to-Host)

e Internode communication between BlueFields (BF-to-
BF)

o Internode communication between a host and its corre-
sponding BlueField (Host-to-BF)

For collective and multi-pair tests, we compare the Host-to-
Host and BF-to-BF arrangements. For all tests, we report the
normalized results with respect to Host-to-Host performance.
Figures [3] and [4] show the results from the OSU microbench-
marks bandwidth and latency tests, respectively. They indicate
that the latency between two BlueFields is higher for smaller
message sizes than the latency between two hosts, but there
is a clear transition point (16 KiB) beyond which the BF-to-
BF performance improves. This transition is due to the shift
from eager to rendezvous protocol at message sizes above
16 KiB. Unlike rendezvous protocol, eager protocol directly
copies the data, which significantly affects BF point-to-point
performance due to its slow CPUs. For the same reason, we
observe a similar trend for multi-pair bandwidth and message
rate tests (Figs. 5] and [6) and collective allgather latency
(Fig. [7). The multi-pair bandwidth and message rate test is
performed between 8 pairs of processes with a window size
of 64. The collective allgather test is run over 16 nodes.

Contrary to our expectations, we observe degraded per-
formance with the BlueField despite being “near-network,”
especially for smaller message sizes. These observations sug-
gest that offloading the communication load to BlueField is
unlikely to improve performance unless one can use them to
overlap computation and communication with the host.

C. Experimental Analysis of MiniMD

To gain more insight into the performance of the BlueField,
we compare the performance of parallel MiniMD on host
CPUs and BlueField Arm CPUs. Figure|[§|shows the slowdown

https://www.hpcadvisorycouncil.com/cluster_center.php

TABLE I
EXPERIMENTAL SYSTEM CONFIGURATION. THE TESTBED IS A 32-NODE CLUSTER, WHERE EACH NODE CONTAINS A DUAL-SOCKET X86 HOST AND ONE
BLUEFIELD. EACH ROW OF THE TABLE BELOW IS A PER-NODE CONFIGURATION. THE LINK BANDWIDTH IS 12.5 GB/s (INFINIBAND HDR AT 100 Gbps).

Cores Peak flop/s Peak GB/s
Host Sockets x CPU per socket per socket Memory per socket Device Type
Thor 2 x Intel E5-2697A, 2.6 GHz 16 656.6Gflop/s 256GiB 76.8 GB/s Host CPU
ThorBF 1 x Arm A72, 2.5GHz 8 80.0 Gflop/s 16GiB 25.6GB/s BlueField P-Series

Normalized OSU MPI Latency

1.8
BF - to-BF Latency
Host-to-Host Latency
Host-to-BF Latency
1.6 Fost-to-Host Latency
3 1.4
=4
[
]
©
-
5 12
[}
N
©
£ 1.0
£
(s}
2
0.8 4
0.6
> > 2o s 2o
Data Size
Fig. 4. OSU MPI latency
Normalized OSU MPI Multiple Bandwidth / Message Rate
BF - to-BF Bandwidth
Host-to-Host Bandwidth
1.8
1.6 4
<
5
2 14
e
5
& 1.2
K
N 1.0
©
g 0.8
=2
0.6
0.4 4

2'10
Data Size

2 2

Fig. 5. OSU MPI multiple bandwidth

of MiniMD on BlueField compared to the corresponding host-
only run. It shows that the observed slowdown is between 1.64
and 2.53. The magnitude of slowdown depends on the ratio of
computation to communication. In particular, we can see that
the slowdown is more pronounced for larger problem sizes
and smaller numbers of processors; as the size of the problem
increases or the number of processors decreases, the size of the
spatial box allocated to each processor becomes much greater
than the cutoff distance, hence each processor spends more
time running computations on its atoms while communicating
a relatively small amount of data with adjacent processors [|18].

Normalized OSU MPI Multiple Bandwidth / Message Rate

BF - to-BF MessageRate
1.8 Host-to-Host MessageRate
© 1.6
3
©
o
o 1.4
()]
©
2124
g1
=
B 104
N
©
€ 0.8+
E
2
0.6
0.4
% % s > .
Data Size
Fig. 6. OSU MPI multiple message rate
Normalized OSU MPI Allgather Latency
35
BF-to-BF Avg Latency
Host-to-Host Avg Latency
3.0
>
[®)
C
[
8
© 251
2
Z
? 2.0
N
©
€
£
2 15
1.0 1

B
Data Size

2 2

Fig. 7. OSU MPI Allgather latency

These trends indicate that the increased share of computation
causes a measurable performance degradation.

Figure [§] also shows that increasing the re-neighboring
interval causes further slowdown on BlueField compared to the
host-only run. This performance degradation is because of the
added share of computation load relative to communication in
each re-neighboring iteration. This relative difference in com-
munication and computation becomes even more prominent
for larger problem sizes.

The execution time breakdown of MiniMD, in the host-only
setting, appears in Fig. [0] Here, tioa is the overall execution

Nodes = 2 # Nodes = 4

2.4
S22
o
°
2
©2.0
%]

1.8

1.6

Nodes = 8 # Nodes = 16

2.4
S22
o
kel
3
2.0
2]

1.8

1.6+ T T r r T T T T r

0 200 400 600 800 0 200 400 600 800
atoms (x103) # atoms (x103)
Re-neighboring Interval
1 2 5 10
Fig. 8. MiniMD performance slowdown on BlueField compared to the

corresponding host-only run

time, tforce 18 the time consumed by the force_compute()
routine, tneigh is the time consumed for the neighbor_build()
routine, and ¢comm 1S cumulative time spent on the exchange(),
border(), and communicate() routines. The time tcomm 1S not
pure communication time; it also includes the time required
to prepare the data for communication. We can see that tcomm
has a small share of the overall execution time. Therefore,
in a host-BlueField hybrid setting, offloading the communi-
cation routines to BlueField would not result in a significant
overall performance gain. Additionally, since the communica-
tion routines in MiniMD are sequentially dependent on prior
computation steps, decoupling these routines from the rest of
the application and offloading them to a co-processor while
achieving full computation-communication overlap is not a
trivial task.

These observations help to justify our design approach
to offloading part of the workload to BlueField on a host-
BlueField hybrid setting, as described in Section

D. BlueField as a “standalone” platform

Although a single BlueField appears underpowered com-
pared to its host in our configuration, it is arguably an efficient,
well-balanced building block. Per Table [} it is possible to
match the peak theoretical flops of a single host node with 16
BlueFields:

(host peak flop/s per socket) x (# sockets)
(BlueField peak flop/s)

~164 (1)

We compare a single host node against different configu-
rations of just BlueField in BlueField. In particular, we first

Nodes = 2 # Nodes = 4

700
600
500

@ 400+

F 300+

Nodes = 8 # Nodes = 16

700
600
500

@ 400

F 3001
200
100

2 4 6 8 10 2 4 6 8 10
Re-neighboring Frequency Re-neighboring Frequency

t_total t_force t_neigh t_comm

Fig. 9. MiniMD running time breakdown

1.754
1.50
1.254

#OMP threads on bf
1

1.00

Speedup

0.75 1 2
4
0.50 8
0.25

0.00 A

1 2 4 8 16
#MPI proc

Fig. 10. MiniMD performance for different configurations of BlueField nodes
compared to the performance of one host node with 32 cores

run MiniMD on a single host node but with full concurrency,
i.e., 32 OpenMP threads to utilize all of its cores. Then, we
run MiniMD using only BlueFields, with one MPI process per
BlueField and varying numbers of OpenMP threads (1 to 8).
The results in Figure [I0| show the speedup of the BlueField-
only configuration against the single host. When matched on
theoretical peak (16 BlueField with full 8-way intra-BlueField
concurrency, against a fully concurrent single-host run), the
BlueField-only run is over 1.75x faster.

IV. ALGORITHM DESIGN

Armed with the preliminary results of Section we
explore different ways of reorganizing MiniMD to exploit the
presence of a BlueField smartNIC.

The most natural opportunity is to overlap a call to the
neighbor_build routine with the force calculation on the
previous neighbor list. For example, consider the execution
timeline of baseline MiniMD as illustrated in Fig. [T1] (top).
Each neighbor-list build step (“NB”’) produces new neighbor
lists, which are then consumed by the three force-computation
steps (“FC”) that follow. That is, the baseline serializes the NB
and FC steps. Suppose instead that we induce an overlap of
NB and FC as shown in Fig. [T] (bottom). This scheme is
different from the baseline: the NB step and the first FC step
run concurrently and both use the old neighbor list, and only
the subsequent two FC steps use the new neighbor-list that
the NB step produced. The interval between two neighbor-
list updates is similar to the original algorithm (i.e., every n
iterations), but the onset of changes in neighbor lists used for
each computation may shift by one iteration.

This transformation will not reproduce bitwise identical
results to the baseline, so a question will be whether a tolerable
accuracy is still preserved under this new heuristic. However,
considering that the original algorithm is itself based on an
expert-tuned parameter-based heuristic, we might regard our
scheme as simply an alternative heuristic—albeit one that tries
to expose more task-level concurrency that the underlying
heterogeneous hardware can exploit.

Neighbor.-list K [K1] K2
Generation
Iteration i i+ i+2 i+3
(a)
Neighbor-list K I K1 [Ke2
Generation
Iteration i i+1 i+2 3 i
(b)
Fig. 11. A schematic of the execution timeline in MiniMD: (Top) The

sequence of neighor-list reconstruction (“NB”) and force computation (“FC”)
steps in the baseline implementation of MiniMD. Each NB step precedes one
or more FC steps that depend on it. (Bottom) Our goal is to induce overlap
of NB and FC steps, through algorithmic and implementation restructuring.
One can then imagine offloading either the NB or the FC steps to an available
smartNIC.

There is another catch: it is nontrivial to merge the outputs
of the force-computation and neighbor-build steps that run
in parallel, due to the design of MiniMD’s data structures.
To understand why, consider these data structures and what
they represent. In MiniMD, each processor keeps its atoms’

positions and velocities in arrays X and V where X|[¢| and
V[i] are the position and velocity of the i-th atom. After
force computation, the accumulated force on the i-th atom
is stored in the i-th location of array F' (i.e., F'[i]). The fact
that this specific atom is recognized as the i-th atom is purely
coincidental, and there is no inverted index maintained to keep
track of the future memory index associated with this specific
atom in X and V arrays. Therefore, we will refer to ¢ as
the temporary identity of this particular atom, until the next
neighbor-build routine shuffles the atoms around and likely
changes this identity. Keeping the fragility of this temporary
identity in mind, MiniMD uses these indices to construct and
maintain its neighbor lists.

Host .
H Bluefield
Initiallntegrate()
} Neighbor
: build iteration?
Neighbor :
— build iteration? : lYes
Send array X H
No Yes|,. z :’ recv_X()

communicate()
exchange()

force_compute()

borders()

) Send soj nfé exchange()
sort() (if needed) :
sort() (if needed)
neighbor_build()
L r.—-. send_F()
Send neighbor Info H
:;> recv_neighborlists()
communicate()
— L
force_compute()

Fig. 12. MiniMD BlueField overlap diagram.

During the next update of the neighbor list, and as new
identities (i.e., indices) are assigned to each atom, the old
neighbor-lists are rendered invalid and new ones should be
rebuilt. To be more precise, as the exchange() routine removes
an atom or adds a new one to its X and V arrays, or after the
sort routine where the order of atoms changes, the previous
indices and consequently the previous neighbor list and border
lists become meaningless after these routines are invoked.
If the neighbor_build and force_compute routines run in
parallel on two different processors, the processor that runs the
neighbor_build is actively changing the temporary identities
of atoms, while the processor that runs force computation is
busy updating the forces for atoms associated with their old
identities and effectively invalid neighbor lists. Therefore, the
resulting array, F', uses obsolete index-atom mappings and
produces unusable data for the next iteration. Any argument
about algorithm correctness depends on having a way to keep
track of atoms index updates on these two processors.

To address this problem, the general structure of our pro-

posed technique is shown in Fig. [I2] During the iteration in
which the host builds neighbor lists, the BlueField waits until
the host finishes the initial integration on the arrays X and
V. Then, the BlueField begins to read the host’s X array
and continues with the communication and force computations
similar to the non-neighbor-build iterations. But since the order
of data has changed in the host, to ensure the correspondence
between atoms on the host and the BlueField, we also run
the exchange routine on the array F', the output of force
computation. This step will ensure consistency in the order of
atoms between host-exchanged X and V arrays and BlueField-
exchanged F' array. Additionally, on the host, an array keeps
track of orders in the sort routine such that the value stored
in index j indicates the new location of the index j. The
BlueField uses this array in its own sort routine to reorder
F. Finally, the array F' is sent to the host. In preparation for
the next neighbor-build iterations, BlueField gets the neighbor
lists after the build step completes on the host.

This implementation is off-path, as it uses the BlueField in
separated-host mode as an additional compute accelerator, in
contrast to an “on-path” packet processing accelerator.

V. RESULTS

Our experimental evaluation considers the baseline MiniMD
implementation and our algorithm (Section when running
on the same BlueField-enabled platform from Section
(Table [). We organize this evaluation into three parts. First,
we conduct multinode runs where, on each node, we limit
concurrency to only one MPI process running on the host
and one running on the BlueField, with no other threads
of concurrency (i.e., additional MPI or OpenMP processes)
within each host or BlueField. This basic assessment aims only
to show that overlapping computation and communication is
feasible. Second, we analyze the accuracy of our method (Sec-
tion [V=2)) to confirm that it produces a reasonable numerical
result. Third, we revist the multinode runs and vary the amount
of concurrency used on both the host and the BlueField (by
varying the number of running OpenMP threads). These results
allow us to develop and validate a simple performance model,
which helps both to explain our observations and determine
other configurations (numbers of host versus BlueField cores)
where one might expect performance benefits.

1) Basic computation and communication overlap

In this assessment, the baseline is unmodified MiniMD
running on P € {2,4,8,16} nodes with one MPI process
per node. This reference is compared against our algorithm,
where each host MPI process is paired with one MPI process
running concurrently on the BlueField located on that node.
For the BlueField-enabled experiments, a host and its paired
embedded BlueField process collaboratively complete an as-
signed job.

We also varied the re-neighboring intervals and numbers of
atoms (from 4,000 to 864,000 atoms). The results appear in
Fig. [13] The performance improvement is computed as

(total baseline time) — (total off-path algorithm time)

2

total baseline time

MPI_proc = 2 MPI_proc = 4

20

15

10

Time Improvement (%)

MPI_proc = 8 MPI_proc = 16

20

15

10

Time Improvement (%)

200 400 600 800

atoms (x103)

0 200 400 600 800 0

atoms (x103)

Re-neighboring Interval
1 2 5 10

Fig. 13. Performance improvement of the off-path technique compared to the
reference algorithm.

Hosts = 2 # Hosts = 4

N
o u o

o

o N N W W
v (&}

Time Improvement (%)
o

w

Hosts = 8 # Hosts = 16

I
S »u o

o

H = N N W W
w w

Time Improvement (%)
o

w

200 400 600
atoms (x103)

0 200 400 600 800 0

atoms (x103)

Re-neighboring Interval
1 2 5 10

Fig. 14. Theoretical maximum performance improvement possible if all the
communication routines are offloaded to BlueField

As shown in Fig. [I3] the off-path implementation achieves
up to a 20% performance improvement compared to baseline.
This performance boost is unexpected, as the BlueField CPU,
acting as a co-processor, is not a high-performance CPU
compared to the host CPU cores.

Our experiments also reveal additional trends. For exam-
ple, as the re-neighboring frequency interval decreases, the
percentage of performance improvement increases. This result
is expected since the computation overlap between the host
and BlueField increases for higher re-neighboring frequencies.
Conversely, as the number of atoms per host decreases, the
increased overhead of the communication between the host and
BlueField outweighs the benefits of overlapped computation
between the host and BlueField, leading to limited perfor-
mance improvements from the off-path algorithm.

Figure [14] shows the theoretical maximum performance
improvement possible if all the communication routines are
offloaded to BlueField and these communication routines on
BlueField are completely overlapped with the computation
routines on the host. The performance improvement values
are calculated by %’O—T: % 100 using the values from Fig.
Comparing the performance gained from our off-path algo-
rithm with the ones shown in Fig. [I4] it can be seen that the
performance gained by the off-path algorithm is higher for
almost all settings, with an absolute difference in performance
improvement of up to 16.75%.

2) Accuracy results

MiniMD reports a variety of statistics about the simulation,
including temperature. We use the reported temperature to
assess the accuracy of our algorithm, through a proxy metric
that we call the femperature divergence rate (TDR).

o We consider the temperature of the baseline algorithm
with highest re-neighboring frequency (i.e., in each iter-
ation) as the reference temperature.

e« We calculate the temperature in the intervals of 10
iterations for each experiment and compute the difference
between computed temperature in each experiment and
the reference temperature in corresponding iterations.

o Using linear regression, we estimate the rate at which this
temperature delta changes as a function of the number
of iterations, i.e., AT(n) = an + 5. The regression
coefficient « is the TDR. Ideally, |[AT'(n)| < ¢ for some
constant 0 if the modified simulation either produced bit-
wise identical results or incurred errors attributable solely
to normal floating-point rounding and nondeterminism
during parallel execution. As such, smaller values of «
indicate better accuracy.

We compare the TDR by varying re-neighboring intervals
for three different skin sizes in Fig. [[5] As expected, TDR
increases as the re-neighboring interval increases for both
baseline and the off-path algorithm. This observation reflects
that the probability of moving an atom more than the skin
distance increases when the re-neighboring intervals are in-
creased. For the same reason, TDR is higher for smaller skin
sizes for the corresponding re-neighboring intervals. Using
TDR as a proxy for the accuracy of the algorithm, the results

show that the off-path algorithm can be as accurate as the
baseline algorithm for a properly selected skin size and re-
neighboring interval.

3) Hybrid MPI/OpenMP performance results

Our algorithm works best when it can completely hide the
force computation time on BlueField by overlapping it with
the neighbor build on the host. Imagining future platforms,
this degree of achievable overlap will depend on the relative
computational power of the host and BlueField device. To
study these scenarios, this section considers multinode runs
with one MPI process per host and one per BlueField where
we also allow the number of cores per host node and cores
per BlueField to vary (in contrast to Section [V-I). We do so
by enabling OpenMP and varying the number of threads. For
all the experiments in this section, the re-neighboring interval
equals one and the number of atoms is 864,000.

The solid lines in Fig. show the off-path and original
MiniMD algorithm runtime for a varying number of OpenMP
threads on the host and BlueField. The off-path algorithm’s
runtime decreases and then stays constant as we increase the
number of OMP threads on the host. The knee of each curve
indicates where the running times of neighbor-build on the
host and force-compute on the BlueField are closest. When
the number of host threads is less than that at the knee, the
neighbor-build on the host is slower than the force-compute on
BlueField. Similarly, when the number of host threads is larger
than that of the knee, the reverse holds. The knee indicates
the maximum number of OpenMP threads on the host where
running force computation on BlueField does not slow down
the computation.

In contrast to the neighbor build routine, thread synchro-
nization overhead in the force computation routine causes
the performance not to scale proportionally to the number
of threads. Specifically, the overhead of multithreading with
two threads on BlueField is visible in Fig. @ Furthermore,
because of the multithreading overhead, the speedup observed
from the off-path algorithm in 1 host thread and 1 BlueField
thread (compared to 1 host thread with the original algorithm)
is not seen in m host threads and m BlueField threads
configuration, where m > 1.

To better understand the performance of our offloading
algorithm, we developed a simple performance model that
estimates the runtime of the off-path algorithm for different
configurations of OMP threads on host and BlueField. We
run the original MiniMD algorithm in both host-only and
BlueField-only settings with one MPI process per node and
an increasing number of OpenMP threads per node. Based
on these experiments, we estimate the required time fforce to
complete one force_compute() call and the time t,eigh for
one neighbor_build() call on the host and the BlueField for
each configuration. We estimate the theoretical runtime of
our algorithm for each configuration as follows, where the
superscript notation p/h/b denotes p MPI processes (one per
host and one per BlueField) with an additional h OpenMP
threads on the host and b OpenMP threads on the BlueField:

le—5 Skin Size = 0.1 Skin Size = 0.2 Skin Size = 0.3
6] P]
5 4 4 4
L
44 1 1
o .
x . | x| AIgonthm
= ® Baseline
24 1 1 Off-path
11 °]])
04 w&" 1 i i <
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Re-neighboring Interval Re-neighboring Interval Re-neighboring Interval
Fig. 15. Off-path algorithm accuracy compared to the reference algorithm
#MPI proc = 2 #MPI proc = 4
29 | 1
28] 1
—~ 271 1
[}
[}
2
o 26 4 4
£
F s J
24 4 4
#OMP threads on bf
234 1 0
1
#MPI proc = 8 #MPI proc = 16 4
8
29 i Time estimation method
--e- Predicted by model
28 1 —»— Measured
—~ 271 1
(9]
b
o 26 4 4
E
= s J
24 4 4
23 1
1 2 4 8 6 32 1 2 4 8 6 32
#OMP threads on host #OMP threads on host
Fig. 16. Performance of the off-path technique for different configurations of Host and BlueField
analysis model to see how the off-path algorithm would
tp/h/b _ tp/h/o {tp/h/o P) 4 ¢p/h/0 perform if the BlueField cores were as powerful as the host
off—path ™ “total force neigh comm cores, referred to as auxiliary nodes. Figure [I7] compares
p/h/0 | 4p/h/0 4p/0/b | 1p/O/b the actual measurement results for the off-path algorithm
— max (tneigh + o mm s troree .+ tobmm (3) p g

iterations

X
re-neighboring interval

Figure [I6] compares the estimated time for the off-path
algorithm (dashed-line) with the actual measurements (solid
line). The figure shows that the model can closely predict
the algorithm runtime. Subsequently, we use this performance

10

in the host/BlueField configuration with the estimated time
for the off-path algorithm in the host/auxiliary node with
one core configuration. As shown in the figure, due to the
synchronization overhead in the force computation routine,
in the host/BlueField configuration, the performance of the
off-path algorithm improves nearly 2.5x by increasing the
number of OMP threads 8-fold. Based on our performance

#MPI proc = 2

294

28

27.

Time (sec)

26.

254

#MPI proc = 16

#OMP threads on bf
1
2
4
8
Configuration
--o- Host/Auxiliary node
—s— Host/Bluefield

2 4 8 16
#OMP_threads on host

T
32

2 4 8 16
#OMP_threads on host

T
32

Fig. 17. Performance of the off-path technique on the auxiliary node compared to the BlueField

analysis model results, the off-path algorithm on the single-
core auxiliary node can perform just as well as the BlueField
with eight cores. This is possible because the synchronization
cost does not hinder the performance of the single thread
setup.

Based on these observations, we can make several conclu-
sions. The weak cores on the BlueField are more suitable for
offloading an application with a high degree of parallelism
and low synchronization overhead. If a target application
needs more synchronization, it would be fruitful to consider
incorporating bigger, fewer cores into the off-path SmartNICs.
This approach may also help with communication overhead in
these processors. As seen in Section the slower CPU on
BlueField was the primary reason for the degraded perfor-
mance in OSU benchmarks, especially for smaller messages
(smaller than 16 KiB), for which the CPU is used to copy the
buffer data.

VI. CONCLUSIONS AND FUTURE WORK

Our work shows the viability of off-path computation in
an HPC proxy app on a smartNIC accelerated by low-cost
general-purpose multicore processors. This complements the
two main bodies of closely related existing work, briefly
reviewed in Section one considers smartNICs with spe-
cialized ASICs or FPGAs and another considers smartNICs
with general-purpose processors but focuses on accelerating
middleware (e.g., MPI communication primitives).

Our study confirms that to achieve performance improve-
ments is likely to require aggressive algorithm and implemen-
tation restructuring. This notion had been suggested, but not
tried, by others in a BlueField evaluation with the PENNANT
proxy app [12]]. This kind of result hearkens back to analogous
findings for graphics co-processors. Therefore, although our
demonstration is arguably narrow, it is in our view nevertheless
important: it helps to expand the possibilities of a new platform
architecture, indicating other ways in which one might try to
use smartNICs in future studies by others and by us.

One candidate class of comptuations are distributed sten-
cils, and in particular, communication-avoiding variants that

11

use blocking or tiling in time as well as space to trade-
off redundant computational work (via larger halo regions)
for reduced communication [19]. We suspect there is an
algorithmic match to a BlueField-accelerated platform. The
redundant work involved might be only a fraction of the main
work; therefore, comparatively weak BlueField cores might
still be able to execute that redundant work “without cost”
to the host. Moreover, since the redundant work is limited
to updates in the halo region itself, which is precisely the
data that participates in communication exchanges, there are
potential benefits from a lower latency communication path
afforded by the smartNIC. We believe that similar algorithms
like miniAMR also have the same characteristics and may
benefit from algorithm rewrites to target current and future
smartNIC devices, and we are pursuing these examples.

The BlueField platform itself is limited (Section , which
opens numerous research and development opportunities. For
instance, some of the computation that we had assumed would
be most profitable to offload onto the BlueField in our new
off-path algorithm, like sorting and basic analysis or near-
communication data structure reorganization, was severely
limited by the low core frequency of the embedded Arm
cores. The opposite proved to be true, and indeed, we were
surprised by the aggregate efficiency of BlueFields in stan-
dalone mode when matching the host on peak performance
(Section This observation, incidentally, indicates that a
possible architecture might rebalance the ratio of lightweight
BlueField processing elements and more heavyweight cores,
where BlueField nodes that run easily parallelized and NEON
vectorized operations and “offload” irregular computations
onto the heavyweight cores, similar to early claims about
GPGPUs.

Thinking more broadly, understanding these limitations
fully will require additional work, to include more case
studies, performance modeling, and programming model im-
provements. Performance modeling would help identify when
offload is profitable or what hardware parameters would need
improvement to deliver a benefit. Regarding programming

model improvements, we had to “hack™ the code in an
ugly way to construct the separate control paths for force
computation and neighbor list updates. As such, new program-
ming models that simplify how offload is implemented would
facilitate future experiments.

Among our algorithmic restructurings, for MiniMD we
needed to allow for a slight “drift” in terms of neighbor
updates. Doing so created a scenario where the BlueField can
be used to overlap force computations and neighbor rebuild
operations on both the host and smartNIC. The commensurate
performance improvements appear to be greater than the
incremental power increase needed to add a smartNIC to
the host in the first place. As a very rough estimate, the
Thor servers used for experimental testing consume 316 W
on average over a week with a peak power usage of 889 W
over the same time period, as measured by standard IPMI logs.
We estimate that the BlueField consumes on average 20 W to
40 W, meaning that an increase in average system power ([20—
40]/316) of 6% to 13% is required to enable our speedups of
up to 20%. While this is a very rough calculation, it bears
further exploration especially as these BlueField devices are
potential drop-in replacements for InfiniBand adapters, which
already consume 18 W to 20 W on average.

ACKNOWLEDGEMENTS

This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government. This
work has been funded through Sandia National Laboratories
(Contract Number 2200840). Sandia National Laboratories is
a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. We thank the
HPC-AI Advisory Council testbed for BlueField testing and
evaluation. This work also used resources from the CRNCH
Rogues Gallery testbed (NSF CNS #2016701).

REFERENCES

[1] R. E. Grant, W. Schonbein, and S. Levy, “RaDD Runtimes: Radical and
Different Distributed Runtimes with SmartNICs,” in 2020 IEEE/ACM
Fourth Annual Workshop on Emerging Parallel and Distributed Runtime
Systems and Middleware (IPDRM), 2020, pp. 17-24.

S. Di Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider,
J. Berdanek, L. Benini, and T. Hoefler, “PsPIN: A high-performance
low-power architecture for flexible in-network compute,” arXiv preprint
arXiv:2010.03536, 2020.

[2]

12

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al.,
“Azure accelerated networking: SmartNICs in the public cloud,” in /5th
{USENIX} Symposium on Networked Systems Design and Implementa-

tion ({NSDI} 18), 2018, pp. 51-66.
A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krish-

namurthy, “High performance packet processing with flexnic,” in Pro-
ceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, 2016, pp.
67-81.

B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference, 2016, pp. 1-14.

S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Br-
uschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda et al., “Flow-
blaze: Stateful packet processing in hardware,” in I6th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI'}
19), 2019, pp. 531-548.

M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Magbool Hashmi,
and D. K. Panda, “BluesMPI: Efficient MPI Non-blocking All-to-
all Offloading Designs on Modern BlueField Smart NICs,” in High
Performance Computing, ser. Lecture Notes in Computer Science, B. L.
Chamberlain, A.-L. Varbanescu, H. Ltaief, and P. Luszczek, Eds. Cham:
Springer International Publishing, 2021, pp. 18-37.

W. Schonbein, R. E. Grant, M. G. F. Dosanjh, and D. Arnold, “INCA: In-
network compute assistance,” in Proceedings of SC19: the International
Conference for High Performance Computing, Networking, Storage and
Analysis, no. 54, 11 2019, pp. 1-13.

M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartNICs using iPipe,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
2019, pp. 318-333.

J. Liu, C. Maltzahn, C. Ulmer, and M. L. Curry, “Performance character-
istics of the BlueField-2 SmartNIC,” arXiv preprint arXiv:2105.06619,
2021.

B. K. Williams, W. K. Poole, and S. W. Poole, “Investigating scientific
workload acceleration using BlueField SmartNICs [slides],” 3 2020.
[Online]. Available: https://www.osti.gov/biblio/1607904

A. Jain, N. Alnaasan, A. Shafi, H. Subramoni, and D. K. Panda,
“Accelerating CPU-based distributed DNN training on modern HPC
clusters using BlueField-2 DPUs,” in 2021 IEEE Symposium on High-
Performance Interconnects (HOTI). 1EEE, 2021, pp. 17-24.

B. K. Williams, S. W. Poole, and W. K. Poole, “Exploring OpenSNAPI
use cases and evolving requirements [slides],” 8 2021. [Online].
Available: https://www.osti.gov/biblio/ 1814738

M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, vol. 3, 2009.
“OSU microbenchmarks v5.7,” online; accessed September 28, 2021.
[Online]. Available: https://mvapich.cse.ohio-state.edu/benchmarks/
“NVIDIA Mellanox HPC-X software toolkit,” March 9, 2021,
online; accessed September 27, 2021. [Online]. Available: https:
//docs.mellanox.com/display/HPCXv281/Release+Notes

S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of computational physics, vol. 117, no. 1, pp. 1-19, 1995.
D. Wonnacott, “Using time skewing to eliminate idle time due to
memory bandwidth and network limitations,” in Proceedings 14th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2000),
2000, pp. 171-180.

https://www.osti.gov/biblio/1607904
https://www.osti.gov/biblio/1814738
https://mvapich.cse.ohio-state.edu/benchmarks/
https://docs.mellanox.com/display/HPCXv281/Release+Notes
https://docs.mellanox.com/display/HPCXv281/Release+Notes

