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Lithium metal anodes can theoretically increase battery capacity by  
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Traditional Li-Ion Batteries
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How Can We Improve Rechargeable Batteries?

J.-M. Tarascon and M. Armand Nature 

DOI: 10.1038/35104644

K.G. Gallagher et al. J. Electrochem. Soc.

DOI: 10.1149/2.0611506jes

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjFla3Ul8vOAhWHKWMKHUkaBk0QjRwIBw&url=http://forum.nasaspaceflight.com/index.php?topic%3D28194.0&psig=AFQjCNEa4G9ZBa8t88QGUY94AogminydHw&ust=1471617181692196
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Rechargeable Li Metal: Chemical & Mechanical
• Uncontrolled morphology → many problems

• Short circuits = fire

• Excessive solid electrolyte interphase (SEI) = low Coulombic efficiency, 

high impendence, and Li consumption

• Li gets stranded and disconnected = “dead” Li
Gireaund et al., Electrochem. Comm. 8, 1639 (2006)
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Lithium Self-Discharge and Prevention
Qian et al. Nature Communications DOI: 10.1038/ncomms7362
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CINT’s Electrochemical TEM Discovery Platform

Harrison et al. ACS Nano

10.1021/acsnano.7b05513

*planar electrodes on insulated 

chip surface with no separator
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In-Situ Nanoscale Li Electrodeposition
Qian et al. Nature Communications

DOI: 10.1038/ncomms7362

• Morphology images after every 
deposition and stripping step (Li = white)

• CE VERY low (18% ± 9%) 
• Widely varied morphology

Harrison et al. ACS Nano

DOI: 10.1021/acsnano.7b05513
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Applied Pressure Critical for High-Density Li
Qian et al. Nature Communications

DOI: 10.1038/ncomms7362

10 mm

Harrison et al. ACS Nano

10.1021/acsnano.7b05513
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Controlled Pressure on Electrodeposited Li
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Effects of Pressure on Li Metal: Low Current

Harrison et al., ACS Appl. Mater. Interfaces 13, 31668 (2021).

DOI: 10.1021/acsami.1c06488

• Cycling stability generally 
increases with increasing 
pressure until 10,000 kPa

• 10,000 kPa is too high and 
causes increased 
overpotential and loss of 
cycling stability

• Transport might be limited 
locally at high pressure 
where pores can close

• CE generally improves with 
pressure but 100 and 1,000 
kPa are similar

Low Current: 0.5 mA/cm
2
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Effects of Pressure on Li Metal: Low Current

Harrison et al., ACS Appl. Mater. Interfaces 13, 31668 (2021).

DOI: 10.1021/acsami.1c06488

Four replicates at 0 kPa Four replicates at 1000 kPa

shorted cell

cell ran out of 

accessible Li

cell ran out of 

accessible Li

Low Current: 0.5 mA/cm
2
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Characterization: Ex-Situ Cryogenic SEM

Vitrobot
Captures native, solvated 

state

Talos L120C CryoTEM
Dedicated low dose, low keVTEM for imaging of beam 

sensitive materials

Leica Cryo SEM 

Stage
Includes cryo-FIB milling, lift out, and 

transfer to the TEM

Scios FIB/SEM
Analysis of surfaces & buried 

interfaces;  3D tomography

Dr. John Watt

watt@lanl.gov
• Plunge-freeze or slowly freeze coin cell battery electrodes

• Inert transfer from glovebox into cryo SEM/FIB

• Cross-sectioning in cryo SEM/FIB to observe electrodeposited Li metal

cint.lanl.gov or 

nsrcportal.sandia.gov
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Pressure at Low Current: 1st Li Deposition Step

Harrison et al., ACS Appl. Mater. Interfaces 13, 31668 (2021).

DOI: 10.1021/acsami.1c06488

• Morphology improves drastically 

with pressure (even for 10000 kPa)

Low Current: 0.5 mA/cm
2
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Pressure at High Current: 1st Li Deposition Step
High Current: 4 mA/cm

2

• Li deposits are denser with increased pressure but slight difference 
• Low current, no transport limitations, Li deposits at most favorable sites
• High current, transport severely limited, Li will deposit everywhere

Harrison et al., iScience 24, 103394 (2021).

DOI: 10.1016/j.isci.2021.103394
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Effects of Pressure on Li Metal: High Current

Harrison et al., iScience 24, 103394 (2021).

DOI: 10.1016/j.isci.2021.103394

High Current: 4 mA/cm
2
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Pressure at Low Current: 51st Li Deposition Step
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Cross-sectioning without Battery Disassembly

Helios Laser Plasma FIB
fs laser mills 15,000x faster than Ga-ion FIB

• Two Celgard 2325 Separators
• Li/SEI/electrolyte layers found

Jungjohann et al., ACS Energy Lett. 6, 2138 (2021).

DOI: 10.1021/acsenergylett.1c00509
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Pressure at High Current: 51st Li Deposition Step

Harrison et al., iScience 24, 103394 (2021).

DOI: 10.1016/j.isci.2021.103394

High Current: 4 mA/cm
2
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All Pressures: Li Deposition within Separator

Harrison et al., iScience 24, 103394 (2021).

DOI: 10.1016/j.isci.2021.103394

High Current: 4 mA/cm
2
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fs Laser Slice-N-View of Battery Stack

318 µm
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PI-95 Picoindenter in TEM

Hysitron Corp.

Nanoindentation I Beams Notched Micro Tension BarsNanopillars

Notched Bar

Dr. Khalid Hattar

khattar@sandia.gov
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A6-2 Experiment
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A6-2 Experiment
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A6-2 Experiment
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Future: Electrical-Mechanical TEM

Nanoindentation tip from PI-95

that applies the electric field

Sample can be at 

high temperature

Electric

Field 
Electrical 

Discharge

Can observe changes in 

sample

• Electromigration
• Electrical discharge
• Can combine with laser stimulus
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Future: Electrochemical-Mechanical TEM
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Thank You! Questions?

Katherine.Jungjohann@nrel.gov
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