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Machine learning (ML) techniques are used widely to enable a wide variety of modern 
capabilities – including on-line search, self-driving cars, cybersecurity, and national security.  As ML 
becomes more ubiquitous, and is used in more critical systems, ML security increases in importance.  
However, a rapidly growing body of research indicates that – while it is critical to enabling many current 
techniques – ML exposes new security concerns.  While there is still little evidence of open attacks 
exploiting most of these security concerns,1 we expect exploits (so-called “Adversarial ML”) to become 
common soon.  To ensure national security, nuclear missions, and maintain our many other capabilities, 
all-of-government efforts must unite with academic and industry partners to develop defenses and best 
practices – establishing defenses around ML systems so we can defend them quickly as attacks arise.
Machine Learning Attack Categories

As Adversarial ML is still relatively new, terminology, categorization, etc. are still in in flux.2  
Therefore, we present the following four attack categories as our best-effort categorization – recognizing 
that other researchers may use different language and categories.

Evasion: Evasion attacks seek to avoid proper classification of an input item by slightly altering 
the input item.  In the literature, these are generally called “adversarial examples”.  The first widely 
referenced, very successful attack is the Fast Gradient Sign Method (FGSM) (Goodfellow, Schlens, & 
Szegedy, 2015).  The FGSM requires the attacker can measure the targeted model’s gradient at the 
location of a to-be-submitted input.  Taking a down-hill step from this position is often sufficient to 
ensure the model misclassifies the input.  Many follow-on techniques have been proposed that can target 
a specific false class (Yuan, He, Zhu, & Li, 2018), iterate over many smaller steps for less noticeable 
alterations (Kurakin, Goodfellow, & Bengio, 2016), and can generate misclassifications without gradient 
access (Papernot, et al., 2017).

Subversion: Subversion attacks seek to avoid proper classification of an input item by altering the 
model while it is being created.  In the literature, many of these attacks use “data poisoning”.  A 
foundational analysis in this space placed small additional features on input images (e.g., a small, yellow 
rectangle on stop signs for driving sign classification) and gave them different labels (e.g., the modified 
stop signs are labeled as speed limit signs) (Gu, Dolan-Gavitt, & Garg, 2019).  They showed that these 
altered input images resulted in high likelihood of misclassification on altered test data.  Many further 
attacks have replaced some training data with different labels (Kegelmeyer, et al., 2015), moved values of 
specific input data (Biggio, Nelson, & Laskov, 2013), and other subversions showing that there are many 
possible ways to poison models to create backdoors.

Theft: Theft attacks seek to steal data that was not intended to be visible from a model.  How 
these attacks succeed varies widely – from similar to those that require subversion-like poisoning, to only 
evasion-like query-level access.  Thus, theft attacks are identified by their goal only (not the technique as 
well).  Model inversions are a particularly frightening theft attack that enable an attacker to extract 
example images for each class from a model (Fredrikson, Jha, & Ristenpart, 2015).  In brief, a model 
inversion attack starts with an uninformed input (e.g., gray image), and march up the gradient direction to 
find a specific maximal value for a class.  These results can often be quite informative of what data was 
used to train the model.  Other theft attacks furthered model inversions (Yang, Chang, & Liang, 2019) 
(Yin, et al., 2019), enabled querying for if a specific value was in the training data (Shokri, Stronati, 
Song, & Shmatikov, 2016), or encoded any data the attacker chose into the model (Song, Ristenpart, & 
Shmatikov, 2017).

1 Although not widespread, there is continuing evidence of some on-going Adversarial ML attacks: 
https://kb.cert.org/vuls/id/425163, https://nvd.nist.gov/vuln/detail/CVE-2019-20634, 
https://interestingengineering.com/deepfaked-voice-of-ceo-used-to-steal-almost-250000-from-company.
2 Notably, NIST has begun to unify terminology: https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8269-draft.pdf.
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Misuse: Misuse attacks seek to leverage a benign ML technology to nefarious ends.  In the 
literature, the most common of these attacks are “deep fakes”.  In a deep fake attack, a model can be 
trained that can transfer training data’s features to a secondary data’s space (Mirsky & Lee, 2020).  While 
used for a variety of other input types, the most common examples transfer one person’s facial 
expressions to another person – seamlessly replacing one actor’s performance with another’s.  There are 
many examples of very convincing deep fakes being used in real-world attacks causing results that can be 
very expensive to the targets.3
Counter-Adversarial Machine Learning

These many novel attacks have led to a wide variety of new defenses being proposed.  These 
defenses range from those that require models be retrained to be more robust,4 to those that seek to 
identify attack inputs (Zhang, Chen, & Koushanfar, 2021).  However, thus far most of these defenses 
have been quickly overcome by new attacks (Carlini & Wagner, 2017) (Tramer, Carlini, Brendel, & 
Madry, 2020).  Some recent research also indicates that some of these attacks may be exploiting 
fundamental issues with modern ML (Ilyas, et al., 2019) (Javanmard & Soltanolkotabi, 2020).

However, it is often the case that in new competitive spaces, attacks outpace defenses at first.  For 
instance, cybersecurity attacks and spam email attacks frequently overcame all proposed defenses during 
the early days of both technologies.  However, in both cybersecurity and email there are now many 
techniques that prevent or rapidly detect a wide variety of attacks before they can succeed.

We compare counter-adversarial ML to cybersecurity intentionally.  We believe defenses must be 
developed and improved immediately.  Although defenses will be weaker than attacks for some time, to 
wait until attacks are commonplace before truly focusing on defenses only extends the truly dangerous 
period when attackers may succeed with impunity.  Furthermore, much like cybersecurity, counter-
adversarial ML is not an area where a silver bullet defense will arise and the adversarial ML will be 
“solved”.  Instead, it will be a space where defenders will develop a toolkit of techniques to protect the 
many systems that rely on ML technologies to succeed.  Just as we cannot “turn back the clock” to 
remove ML from our systems, we cannot stall in our efforts to build robust defenses around them.
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