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Additive Manufacturing at SNL

full scale additive weapon 
mock-up

printed battery

Sandia 
telescope

Reduce risk, accelerate development
• Restore manufacturing capability
• Simplify assembly & processing
• Prototypes, test hardware, tooling & fixturing

Add value
• Design & optimize for performance, not mfg

• Complex freeforms, internal structures, integration

• Engineered materials
• Gradient compositions
• Microstructure optimization & control
• Multi-material integration

• “print everything inside the box, not just the box”

Continually growing interest across Sandia missions



4

W-DED: Background
Objective: Provide statistically validated material specs and design margins for      
W-DED Ti-6Al-4V products

– Balance need of rapid testing and establishing statistically AND structurally relevant data

– Provide guidance to stakeholders with clear pathway for process qualification cycle of      
W-DED products

Process

Post-processCharacterize

Adjust process

• Phase I
• Phase II
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Hybrid WAAM

Meltview monitoring camera

Plasma Arc Tungsten Arc Metal Arc
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EBAM - Sciaky

Sciaky Image credit: https://www.sciaky.com/additive-manufacturing/industrial-metal-3d-printers
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“High Throughput Testing”
MTS: 858 5-kip frame • Displacement rate 0.01 mm/s

• FLIR 90 fps, 4.1 Mpix camera

High Throughput 
Specimen Geometry

Rapid development of statistically 
relevant tensile data
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Conventional vs. Additive Manufactured
Wrought: Mill AnnealMill Annealed

W-DED

Conventional Process
• Material formed from bulk 

feedstock
• Microstructure formed prior to 

geometry
• Well documented post-process 

effects and properties

AM Process
• Near net-shaped from wire 

feedstock
• Microstructure formed along 

with geometry
• High uncertainty in post-

process effects and properties

Wrought: b Anneal

Wrought: a Anneal
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Heat Treatments

b)

20°C/m
in

50°C/m
in

10°C/m
in

Overtemp: 980°C

HT1: Beta anneal + Overage
Anneal at 1050°C for 1 hour, ArQ 725°C, 2 hour soak, Argon 
Quench

HT2: Alpha/Beta anneal + Overage
Anneal at 926°C for 1 hour, ArQ 725°C,  2 hour soak, Argon 
Quench

HIP: Hot Isostatic Pressing
920°C for 1 hour, 100 MPa, 2 hour soak
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Immersion Ultrasonic Inspection
• Immersion inspections were performed from 

the etched surface. 
• ~50 mm resolution and at a height of 50 mm 

above side being scanned
• No observable defects discovered for wrought 

material
• Low porosity observed for both WAAM & 

EBAM
• WAAM showed a slightly higher defect densityWAAMEBAM
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Anisotropy in W-DED

sz

sx

sy

szsx, sy

Continuous a
Prior b boundary
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Wrought & As-built Microstructures

Averag
e (mm)

Std 
(mm)

Minor 4.07 3.50
Major 7.46 7.59

Phas
e

Fract.

Alpha 93.4 
%

Beta 6.5 %

Wrought WAAM EBAM

Phas
e

At. %

Al 6.84
V 3.77
Fe 0.14 Averag

e (mm)
Std 

(mm)
Minor 1.67 0.89
Major 6.18 5.49

Phas
e

Fract.

Alpha 99 %
Beta <1 %

Phas
e

At. %

Al 6.05
V 3.68
Fe 0.12 Average 

(mm)
Std 

(mm)

Minor 13.36 9.87

Major 37.81 29.88

Phase Fract.

Alpha 99 %

Beta <1 %

Phase At. %

Al 6.78

V 3.74

Fe 0.23
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As-built WAAM As-built EBAM

Ductility

El
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ga
tio

n 
to

 F
ai
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re

 (%
)

Wrought

Wrought & As-built Tensile Properties



14

WAAM: Microstructures

Averag
e (mm)

Std 
(mm)

Minor 27.98 9.1
Major 60.39 18.41

Phas
e

Fractio
n

Alph
a

95.9%

Beta 2.0%

Average 
(mm)

Std 
(mm)

Minor 2.34 1.46
Major 8.11 10.77

Phas
e

Fractio
n

Alph
a

99%

Beta < 1%

Averag
e (mm)

Std 
(mm)

Minor 24.26 8.11
Major 60.45 21.68

Phas
e

Fractio
n

Alph
a

95.9%

Beta 2.0%

HT1: b HT2: a HIP
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HT1 HT2

WAAM Tensile Properties
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Fractography: WAAM
HT1: b HT2: aWAAM-AB

Intercrystalline 
fracture along 
continuous a

Mix of ductile 
intercrystalline & 
transcrystalline 
fracture

Ductile 
transcrystalline 
fracture
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EBAM: Microstructures

Average 
(mm)

Std 
(mm)

Minor 30.5 6.42

Major 89.74 21.73

Phase Fraction

Alpha 98.3%

Beta 1.7%
Average 

(mm)
Std 

(mm)

Minor 39.26 10.54

Major 100.05 29.74

Phase Fraction

Alpha 87.7%

Beta 0.7%
Average 

(mm)
Std 

(mm)

Minor 3.31 0.35

Colony 218.46 30.25

Phase Fraction

Alpha 99%

Beta < 1%

HT1: b HT2: a HIP
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HT2As-built HT1

EBAM Tensile Properties
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Fractography: EBAM
HT1: b HT2: aEBAM-AB

Mix of ductile 
intercrystalline & 
transcrystalline 
fracture

Mix of ductile 
intercrystalline & 
transcrystalline 
fracture

Mix of ductile 
intercrystalline & 
transcrystalline 
fracture
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Competing Failure Mechanisms
HT1: b AB, HT2: aAB, HT1: b

Growth of continuous a at prior 
b results in lower strength 
compared to matrix

High cooling rate from b field result 
in intercrystalline facture at prior bCooling rates affect the slip 

length/colony size
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Conclusions/Summary
•  b & (a + b) field heat treatments do not provide convincing benefits 

to WAAM/EBAM tensile properties
• WAAM showed higher density of defects than EBAM
• Microstructure plays a greater role in failure than defects for both 

WAAM & EBAM processes
• Lower cooling rates for EBAM resulted in higher density of 

continuous a along prior-b boundaries and larger degree of 
anisotropy

• Initial microstructure plays a pivotal role in final grain morphology 
after heat treatment
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Remaining Effort
• Complete testing on HIP specimens
• Investigate stress relief + Aging heat treatment schedules
• Finalize heat treatment schedule for bulk tensile testing

Process

Post-processCharacterize

Adjust process

• Phase I
• Phase II

Standard E8 Testing
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Colony vs Lamellar


