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> 1 Introduction

* Question:

Can we use machine learning to
understand the capabilities of a quantum
device?

* Our approach:

Train neural networks on classically
simulable circuits to predict the fidelity of
generic circuits




|
Background - Other Approaches m

« Current guantum computers are noisy and error prone

« Phenomenological models’ Map to 1-2 Look up performance
features on table

« Built on benchmarking tools -
- Rely on human extracted features % »wd ======ii 'E';l ) —_
- Poor performance |
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Success Fail
« Quantum process models?
* Informed by “tomography”

Multiple elements from a set

« Depend on circuit structure of (very large) matrices
* Specious assumptions % _ {Z\'f Gi. - .G } ‘ I
« Hard to scale R

Success Fail

* Neural Networks
« Extract their own features
« Rely on no assumptions
- Potentially scalable % ——> = []
Success Fail

"Characterizing Quantum Gates via Randomized Benchmarking, Magesan et 2Gate Set Tomography, Nielsen et al, arXiv:2009.07301
al, arXiv:1109.6887




» 1 Background - Neural Networks

Basic structure
* Layers of “neurons”

*  “Neurons” perform different operations
* Previous layer feeds into the next layer

Universal approximation theorem
« Capable of learning “most” “reasonable” functions

Convolutional Neural Networks
* Process images

* Learns weights for convolutional filters
« Extracts useful features

Multilayer Perceptron
«  “Vanilla” (deep) neural network

* Dot products and activation functions




s | Qur Approach

Encode circuits as images

Feed images into convolutional
layers

Extracted features are input into a
deep multilayer perceptron

Predict success probability with a
softmax function




s | Preliminary Results - Simulated Data

Biased stochastic error model

Mirror Clifford Circuits

Neural networks provided with stabilizer
information

Outperforms models based on per gate
error rates estimated from the data

Predicted Success Probability

Predicted Success FProbability
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CMNN Predictions

train, BCE = 0.48888
validate, BCE = 0.51895
test, BCE = 0.50662
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MLE Error Rates Model Predictions

train, BCE = 0.48870
validate, BCE = 0.51201
test, BCE = 0.50744
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7 I Preliminary Results - Experimental Data

Run on IBMQ Ourense

Mirror Clifford Circuits

Neural Networks not provided with
stabilizer information

Worse performance than on
simulated data

« Still beats MLE model

Predicted Success Probability

Predicted Success Probability
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CMNN Predictions

train, BCE = 0.48053
validate, BCE = 0.48868
test, BCE = 0.47239
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MLE Emor Rates Model Fredictions

train, BCE = 0.48444
validate, BCE = 0.49287
test, BCE = 0.47593
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Scalability

How scalable is this neural network approach?

Local depolarization errors
* Crosstalk free

« 2Q gate crosstalk

Deep multilayer perceptron learns useful
information

* Up to 30 qubits
« Given circuit depth and two qubit gate count

CNN feature extraction is scalable, but hasn't
been performed

Bucass Pmbabil Ly
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Actual and NN Predictions vs Depth {30 Qubits w/ Crosstalk}

s True
»  Predictions

T T T T T T
20 40 G &0 o0 120
Diapth

Actual and MM Predictions vs Two Qubit Gate Count (30 Qubits wio Crosstalk)

s True

. »  Predictions
»
3
.
L
e
. »
| ]
L ] e ®
50 100 150 200 250

Two Qabit Gate Court




o | Conclusions and Future Work

* Proof of concept

CNNs on simulated and experimental data
Scalability with human extracted features

 Future work

Tune network architecture
Different types of networks

Try more complicated error models
Analyze wider circuits with CNNs
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