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- Engineering constitutive models that capture plasticity and damage have the
following advantages:
1. Flexibility
2. Interpretability
3. Computational tractability

- However, they are limited in their accuracy due to assumptions required for closed
form solutions

- Examples: Gurson [1] and Cocks-Ashby [2]
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Utilize a machine learning approach known as genetic programming
for symbolic regression (GPSR) to generate more accurate, data-
driven, interpretable material models
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Known material Relax model Find new model
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- Gurson model for porous metal plasticity
- Assumptions:

o ores void interacti
. ' elf-similarly o

Assumes voids are arranged in a symmetric array
Assumes a perfectly plastic von Mises matrix material
Does not model void coalescence

o. 2 . o, - Hydrostatic Stress

vm h Oym - VON Mises Stress
+ 2 f cosh|—|—1 - fz = ( oy, - Matrix Yield Stress

Jy 20'3; f — Void Volume Fraction
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Generate training data via finite element (FE) '
simulations s

Model is consistent with all assumptions Gurson RS
makes except void interaction e
- Representative volume element (RVE) with single void ’

- Nodes surrounding void are limited to spherical
deformation .

- Periodic boundary conditions (PBCs) W ..
. Varying size of void il -
. 200 triaxial load cases
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- Symbolic regression searches space of known equations via combinations of
variables and weights

- Genetic programming evolves equations based on fitness with data
* Fitness of implicit equations compares partial derivatives of proposed model with data

« Previous studies show GPSR can find known material models such as von Mises

[4] and Gurson (unpublished)
(&
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.- Defining fitness for implicit equations

df Axg and 2L af Axq

Given data: X(x,, x;) Propose model: f(xg, x1) Calculate —vla chain rule — oxg AL ox, At
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Leverage prior knowledge to generate models that are interpretable
and abide by known physics:

Boosting
. Seeding




iicacnavanene - Find New Model Using GPSR A

THE UNIVERSITY OF UTAH

Leverage prior knowledge to generate models that are interpretable
and abide by known physics:

Boosting — a machine learning strategy where many weak learners
are combined to form one strong learner
For each assumption relaxation:

Final GPSR
produced model

/ N

Gurson Relaxed
model assumptions
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- Boosting implementation:

1. Given input data X for assumption 4;

2. Calculate weights
a. Retrieve model from previous boost stage f;_;
b. W; = E(fi-1,X)

3. Minimize Fitness
Propose new model f;(X) ‘) terate
Calculate new model fitness Fitness = W;XE(f;, X)

- Datapoints with worse fit are weighted higher in next boosting

stage
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U iz Find New Models Using GPSR

- Boosting implementation:

1. Given input data X for assumption 4;

2. Calculate weights
a. Retrieve model from previous boost stage f;_;
b.W; = E(fi-1,X)

3. Minimize Fitness

Propose new model f;(X) ‘) terate
Calculate new model fitness Fitness = W;XE(f;, X)
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. Train from the von Mises surface to the Gurson surface
. After 50,000 generations, the correct Gurson equation is found

* Training Data 1.0
— von Mises Surface
—— Gurson Surface
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Leverage prior knowledge to generate models that are interpretable
and abide by known physics:

Boosting

Seeding — replacing a portion of the initial genetic population with
”seeds” that will likely be in the final solution [5]

Genetic population is typically randomly generated
Seeding helps narrow in on search space
Decreases training times, increases interpretability

Seed 1 Seed 2
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Normalized von Mises Stress (

- Relaxing assumption 1: void interaction
- Replaced 10 percent of GPSR population with parts of Gurson equation

. Trained for 200,000 generations
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- Relaxing assumption 1: void interaction
- Replaced 10 percent of GPSR population with parts of Gurson equation
. Trained for 200,000 generations
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.- Main difference with/without seeding/boosting is generation of
physically reasonable and interpretable results
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We can leverage prior knowledge to improve GPSR training on finite
element model data

Boosting can tie directly with relaxing assumptions to improve GPSR
performance and improve interpretability of output equations

Seeding the initial GPSR population reduces search space and
improves final model fitness and interpretability

Future Work: Apply these methods to further relaxed assumptions
to generate more accurate models for real-world materials
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