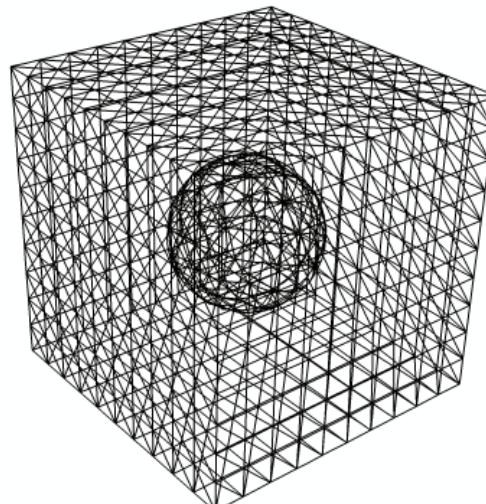


A Data-driven Approach for Improving the Existing Gurson Material Damage Model Using Genetic Programming for Symbolic Regression



Presenting Author: Donovan Birk*
Co-Authors: Jacob Zamora*, John Emery**, Coleman Alleman**, Brian Lester**, Jacob Hochhalter*

Acknowledgments: Geoffrey Bomarito***

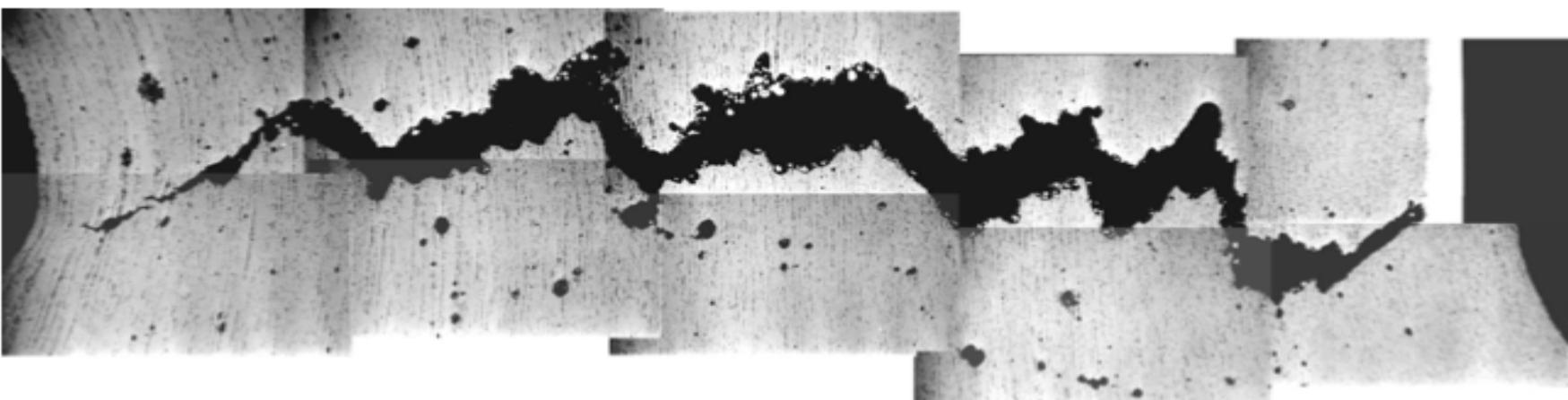
*University of Utah, **Sandia National Laboratories, ***NASA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

$$\left(2.2 - \left(\frac{X}{11} \right) \right) + \left(7 * \cos(Y) \right)$$

Background

- Engineering constitutive models that capture plasticity and damage have the following advantages:
 1. Flexibility
 2. Interpretability
 3. Computational tractability
- However, they are limited in their accuracy due to assumptions required for closed form solutions
- Examples: Gurson [1] and Cocks-Ashby [2]

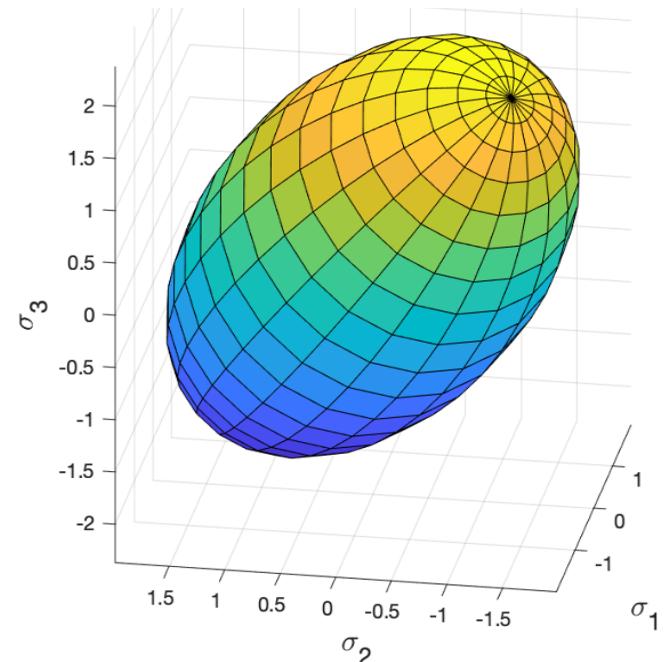


Proposed Solution

- Utilize a machine learning approach known as genetic programming for symbolic regression (GPSR) to generate more accurate, data-driven, interpretable material models

Known Material Model

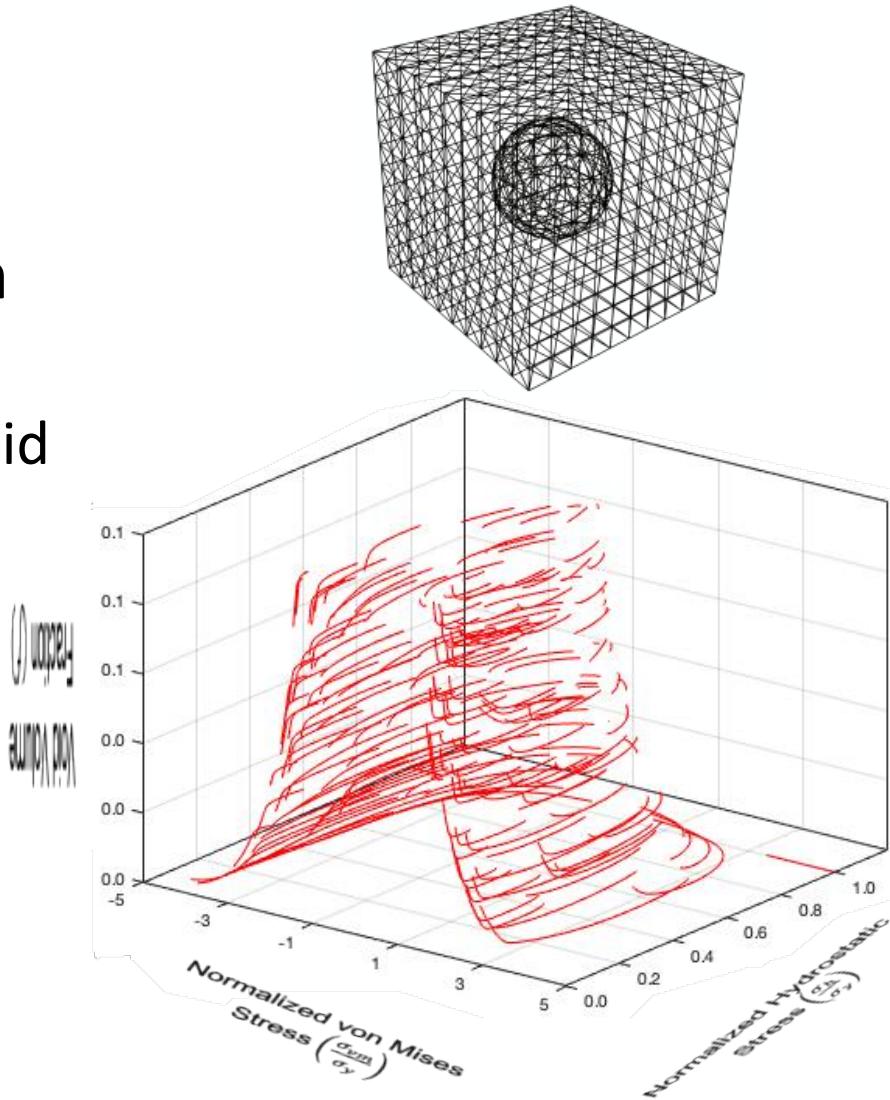
- Gurson model for porous metal plasticity
- Assumptions:
 - Ignores void interaction
 - Assumes voids grow self-similarly
 - Assumes voids are arranged in a symmetric array
 - Assumes a perfectly plastic von Mises matrix material
 - Does not model void coalescence



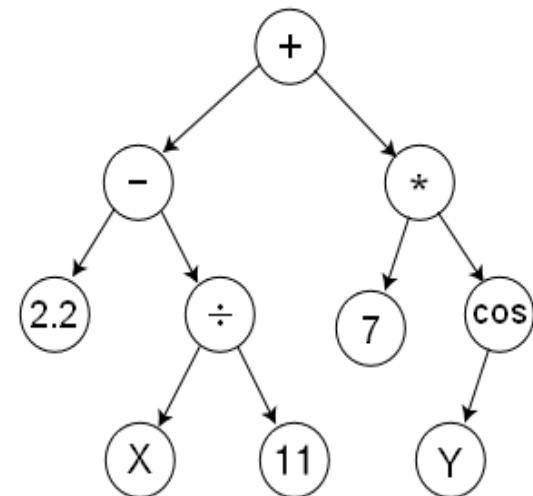
$$\Phi = \left(\frac{\sigma_{vm}}{\sigma_y} \right)^2 + 2f \cosh \left(\frac{3\sigma_h}{2\sigma_y} \right) - 1 - f^2 = 0$$

σ_h - Hydrostatic Stress
 σ_{vm} - von Mises Stress
 σ_y - Matrix Yield Stress
 f - Void Volume Fraction

- Generate training data via finite element (FE) simulations
- Model is consistent with all assumptions Gurson makes except void interaction
 - Representative volume element (RVE) with single void
 - Nodes surrounding void are limited to spherical deformation
 - Periodic boundary conditions (PBCs)
 - Varying size of void
 - 200 triaxial load cases



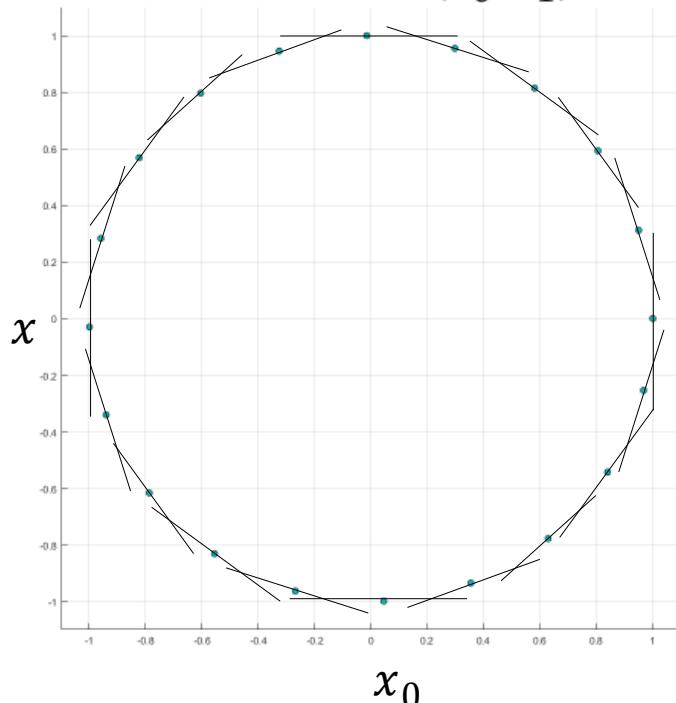
- Symbolic regression searches space of known equations via combinations of variables and weights
- Genetic programming evolves equations based on fitness with data
 - Fitness of implicit equations compares partial derivatives of proposed model with data
- Previous studies show GPSR can find known material models such as von Mises [4] and Gurson (unpublished)



$$\left(2.2 - \left(\frac{X}{11} \right) \right) + \left(7 * \cos(Y) \right)$$

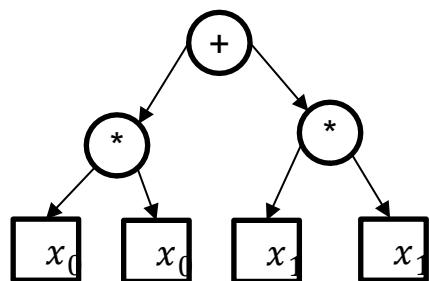
- Defining fitness for implicit equations

Given data: $X(x_0, x_1)$



Calculate $\frac{\Delta x_0}{\Delta t}$ and $\frac{\Delta x_1}{\Delta t}$

Propose model: $f(x_0, x_1)$



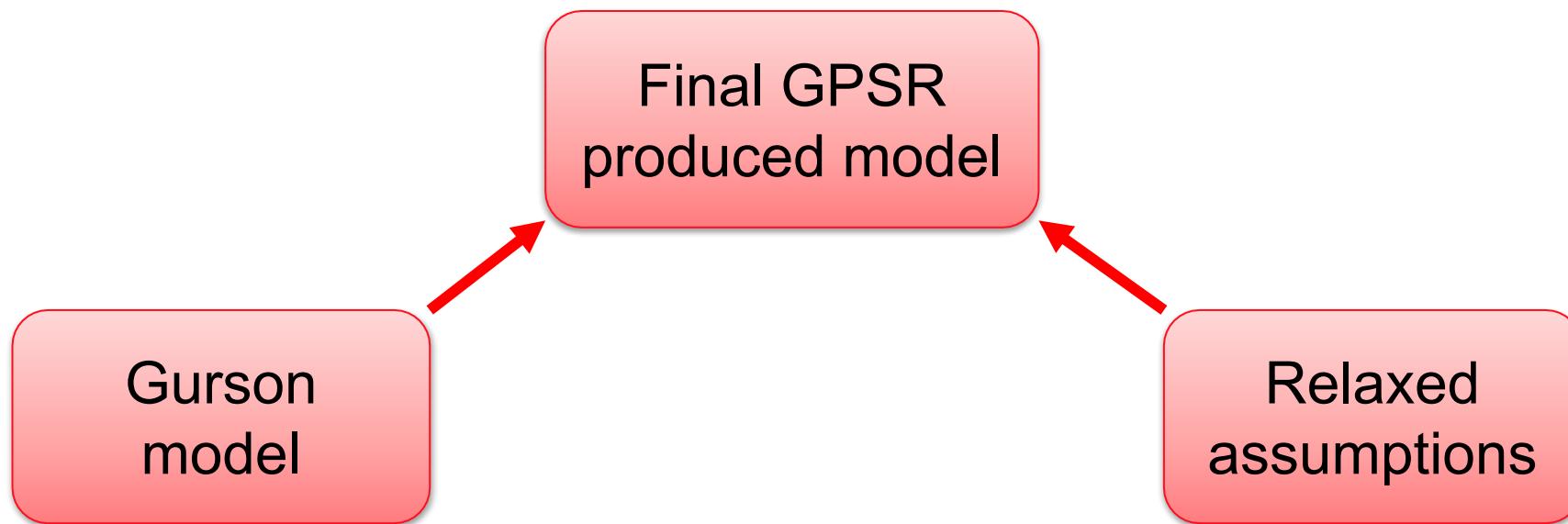
Calculate $\frac{\partial f}{\partial x_0}$ and $\frac{\partial f}{\partial x_1}$

Calculate $\frac{\partial f}{\partial t}$ via chain rule $\frac{\partial f}{\partial x_0} \frac{\Delta x_0}{\Delta t}$ and $\frac{\partial f}{\partial x_1} \frac{\Delta x_1}{\Delta t}$

$$E(f, X) = \frac{1}{N} \sum_{i=1}^N \left| \sum_{j=1}^P \frac{\frac{\partial f}{\partial x_j} \frac{\Delta x_j}{\Delta t}}{\left| \frac{\partial f}{\partial x_j} \frac{\Delta x_j}{\Delta t} \right|} \right|^{(i)}$$

- Leverage prior knowledge to generate models that are interpretable and abide by known physics:
- Boosting
- Seeding

- Leverage prior knowledge to generate models that are interpretable and abide by known physics:
- Boosting – a machine learning strategy where many weak learners are combined to form one strong learner
 - For each assumption relaxation:



- Boosting implementation:
 1. Given input data X for assumption A_i
 2. Calculate weights
 - a. Retrieve model from previous boost stage f_{i-1}
 - b. $W_i = E(f_{i-1}, X)$
 3. Minimize *Fitness*

Propose new model $f_i(X)$
Calculate new model fitness $Fitness = W_i \times E(f_i, X)$
- Datapoints with worse fit are weighted higher in next boosting stage

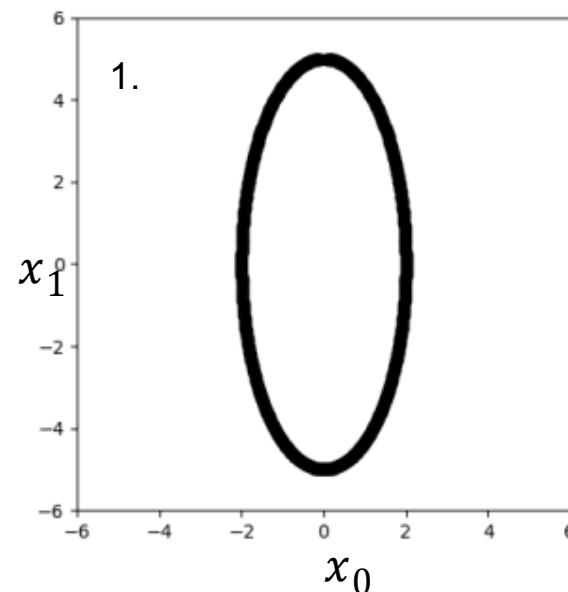
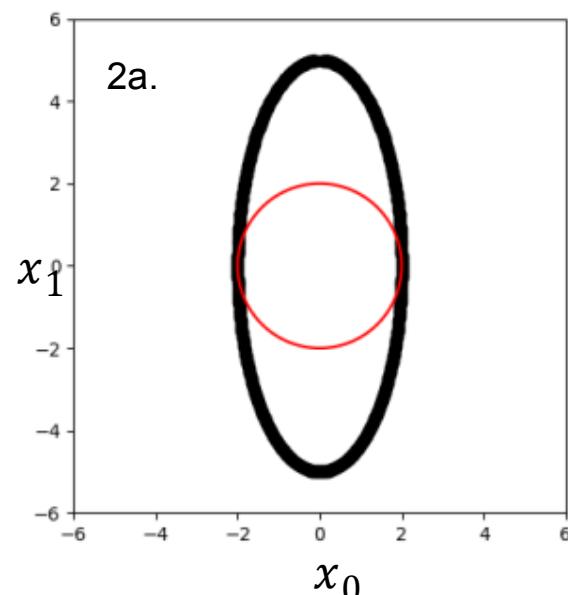
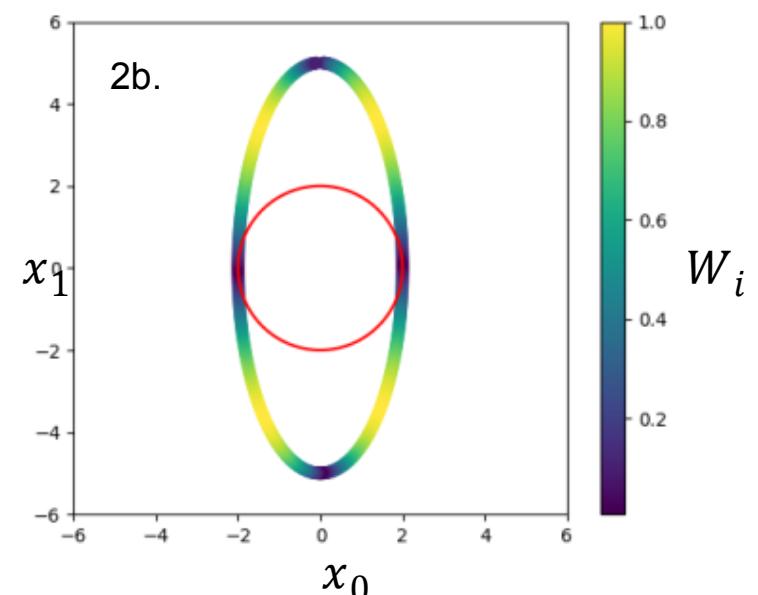
Iterate

- Boosting implementation:

1. Given input data X for assumption A_i
2. Calculate weights
 - a. Retrieve model from previous boost stage f_{i-1}
 - b. $W_i = E(f_{i-1}, X)$
3. Minimize *Fitness*

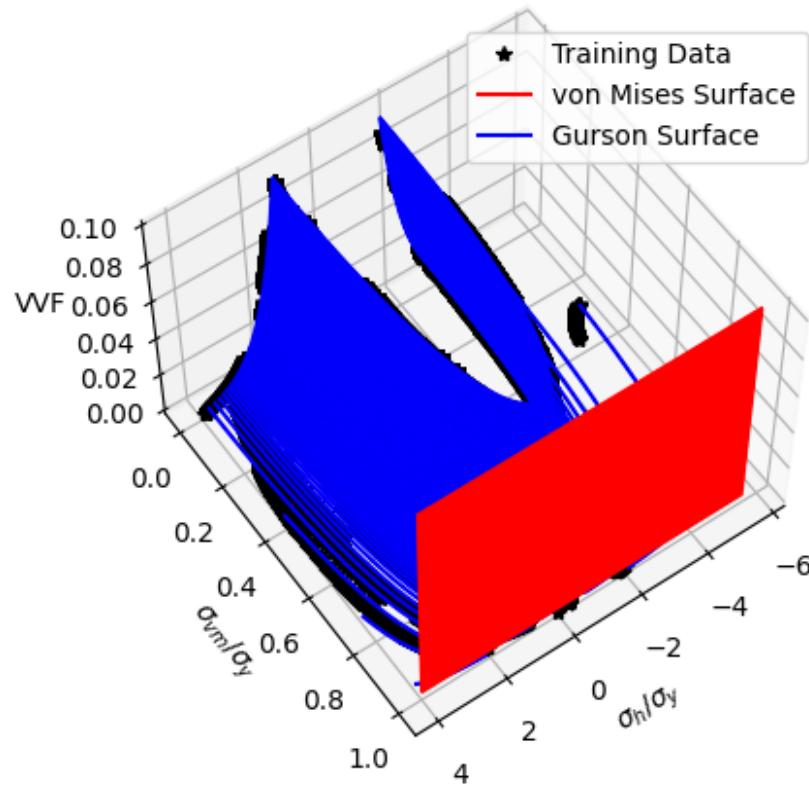
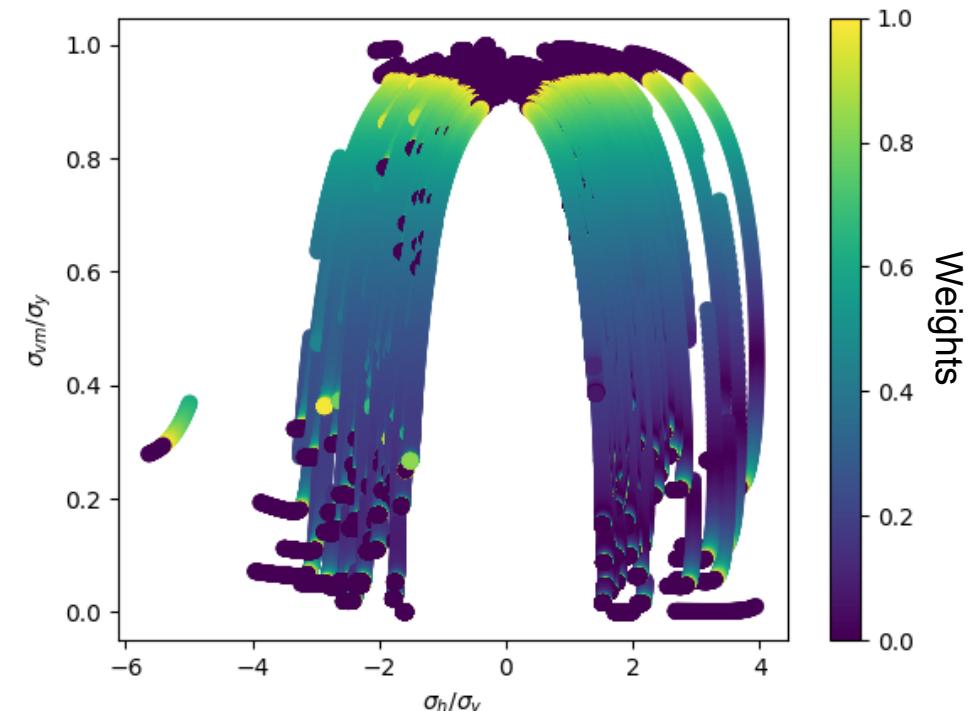
Propose new model $f_i(X)$

Calculate new model fitness $Fitness = W_i \times E(f_i, X)$



Boosting Test Results

- Train from the von Mises surface to the Gurson surface
- After 50,000 generations, the correct Gurson equation is found

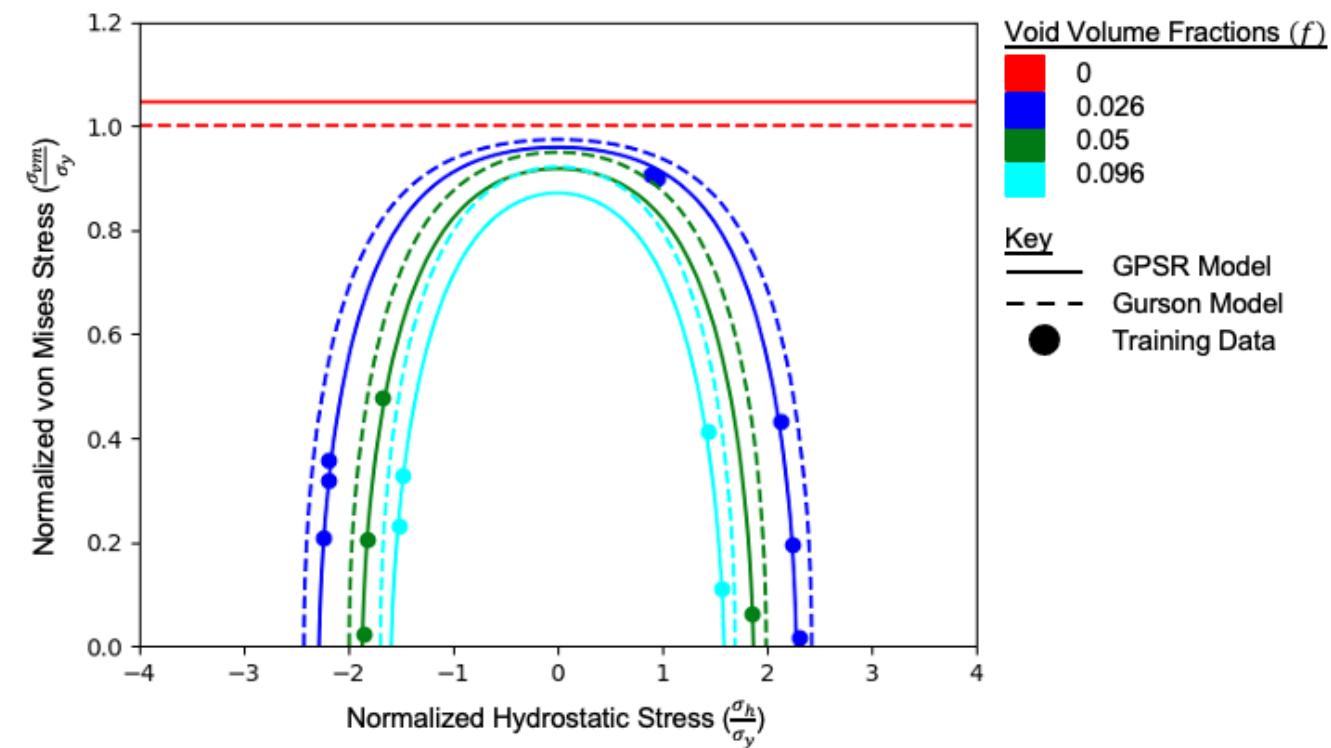


- Leverage prior knowledge to generate models that are interpretable and abide by known physics:
- Boosting
- Seeding – replacing a portion of the initial genetic population with “seeds” that will likely be in the final solution [5]
- Genetic population is typically randomly generated
 - Seeding helps narrow in on search space
 - Decreases training times, increases interpretability

$$\Phi = \left(\frac{\sigma_{vm}}{\sigma_y} \right)^2 + 2f \cosh \left(\frac{3\sigma_h}{2\sigma_y} \right) - 1 - f^2 = 0$$

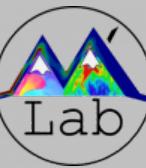
Seeding Results

- Relaxing assumption 1: void interaction
- Replaced 10 percent of GPSR population with parts of Gurson equation
- Trained for 200,000 generations

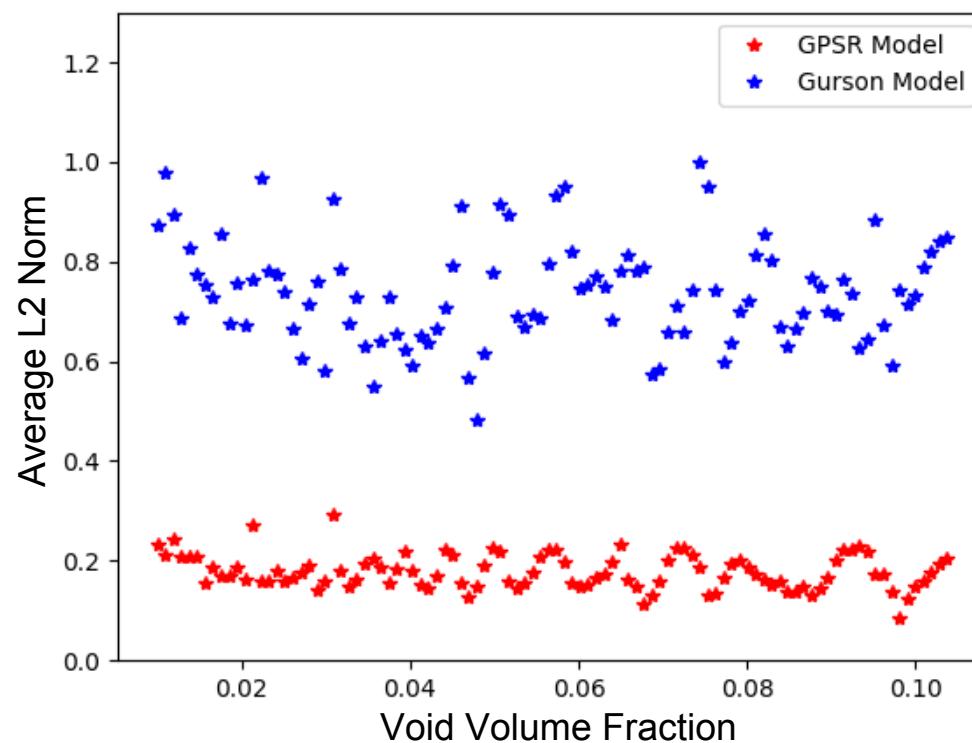


Equation	Fitness
Gurson	
$\Phi(\sigma, f) = \left(\frac{\sigma_{vm}}{\sigma_y}\right)^2 + 2f \cosh\left(\frac{3\sigma_h}{2\sigma_y}\right) - 1 - f^2 = 0$	0.094
GPSR	
$\Phi(\sigma, f) = \left(\frac{\sigma_{vm}}{\sigma_y}\right)^2 + f \cosh\left(\frac{\sigma_h}{\sigma_y}\right) \left(\left(\frac{\sigma_h}{\sigma_y}\right)^2 + \frac{\sigma_{vm}}{\sigma_y} + 2.603 \right) - 1.03 = 0$	0.069

Seeding Results



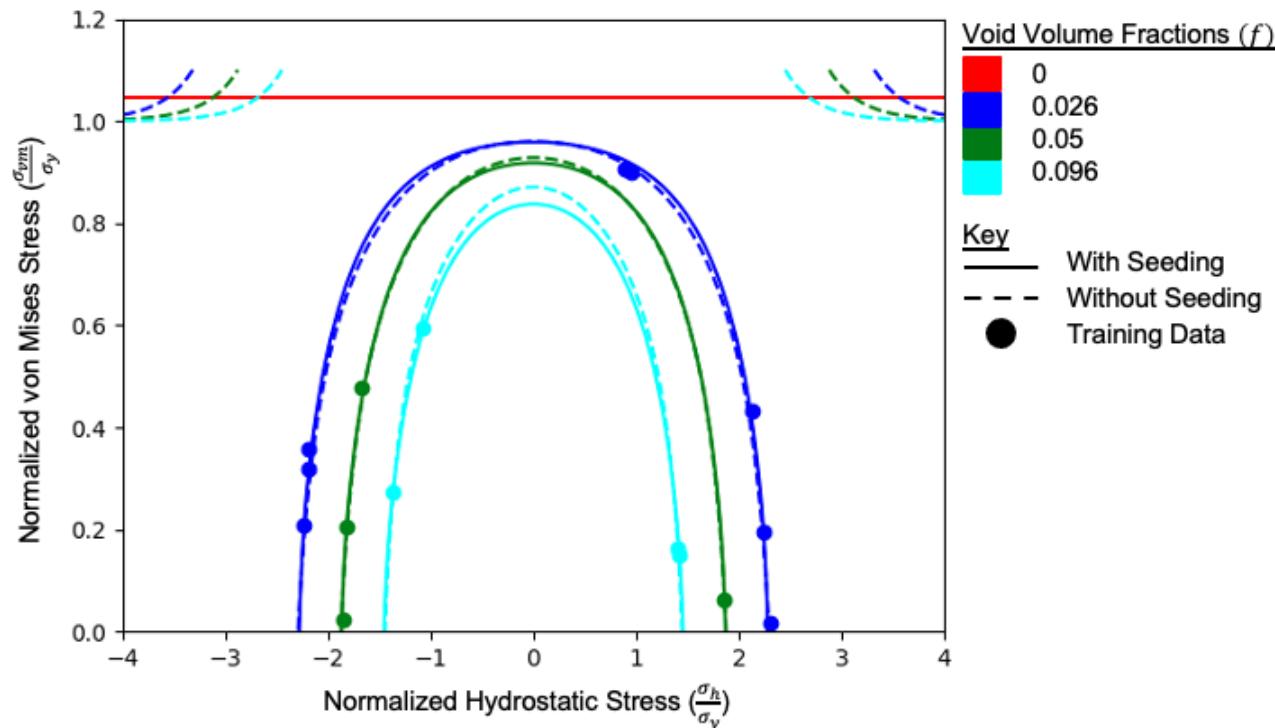
- Relaxing assumption 1: void interaction
- Replaced 10 percent of GPSR population with parts of Gurson equation
- Trained for 200,000 generations



Equation	Fitness
Gurson	
$\Phi(\sigma, f) = \left(\frac{\sigma_{vm}}{\sigma_y}\right)^2 + 2f \cosh\left(\frac{3\sigma_h}{2\sigma_y}\right) - 1 - f^2 = 0$	0.094
GPSR	
$\Phi(\sigma, f) = \left(\frac{\sigma_{vm}}{\sigma_y}\right)^2 + f \cosh\left(\frac{\sigma_h}{\sigma_y}\right) \left(\left(\frac{\sigma_h}{\sigma_y}\right)^2 + \frac{\sigma_{vm}}{\sigma_y} + 2.603 \right) - 1.03 = 0$	0.069

Seeding Results

- Main difference with/without seeding/boosting is generation of physically reasonable and interpretable results



Equation	Complexity
With Seeding	
$\Phi(\sigma, f) = \left(\frac{\sigma_{vm}}{\sigma_y}\right)^2 + f \cosh\left(\frac{\sigma_h}{\sigma_y}\right) \left(\left(\frac{\sigma_h}{\sigma_y}\right)^2 + \frac{\sigma_{vm}}{\sigma_y} + 2.603 \right) - 1.03 = 0 \quad 12$	
Without Seeding (truncated)	
$\Phi(\sigma, f) = -\frac{\frac{\sigma_{vm}}{\sigma_y} \left(f^3 \left(\frac{\sigma_{vm}}{\sigma_y} - \cosh\left(1.53 \frac{\sigma_h}{\sigma_y}\right) \right)^2 \left(f \left(\frac{\sigma_{vm}}{\sigma_y} - \cosh\left(1.53 \frac{\sigma_h}{\sigma_y}\right) \right) - \cosh\left(1.53 \frac{\sigma_h}{\sigma_y}\right) \right) + 0.27 \right) + f^2 \left(f \left(\frac{\sigma_{vm}}{\sigma_y} - \cosh\left(1.53 \frac{\sigma_h}{\sigma_y}\right) \right) - \cosh\left(1.53 \frac{\sigma_h}{\sigma_y}\right) \right) - 31}{f \left(f \left(\frac{\sigma_{vm}}{\sigma_y} - \cosh\left(1.53 \frac{\sigma_h}{\sigma_y}\right) \right) - \cosh\left(1.53 \frac{\sigma_h}{\sigma_y}\right) \right)} \quad 31$	

Conclusions

- We can leverage prior knowledge to improve GPSR training on finite element model data
- Boosting can tie directly with relaxing assumptions to improve GPSR performance and improve interpretability of output equations
- Seeding the initial GPSR population reduces search space and improves final model fitness and interpretability
- **Future Work:** Apply these methods to further relaxed assumptions to generate more accurate models for real-world materials

Questions?

References

- [1] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth. *J Eng Mater Technol* 1977; 99: 2–15.
- [2] F. Cocks and M. F. Ashby, “Creep fracture by coupled power-law creep and diffusion under multiaxial stress,” no. September, pp. 395–402, 1980.
- [3] G. Bomarito, T. Townshend, J. Hochhalter, E. Adams, K. Esham, and D. Vera, “Bingo,” 2018. [Online]. Available: <https://github.com/nasa/bingo>.
- [4] G. F. Bomarito, T. S. Townsend, K. M. Stewart, K. V. Esham, J. M. Emery, and J. D. Hochhalter, “Development of interpretable, data-driven plasticity models with symbolic regression,” *Comput. Struct.*, vol. 252, p. 106557, 2021.
- [5] Schmidt, Michael D., and Hod Lipson. 2009. “Incorporating Expert Knowledge in Evolutionary Search: A Study of Seeding Methods.” *Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference, GECCO-2009*, 1091–97. <https://doi.org/10.1145/1569901.1570048>.