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Background
• Engineering constitutive models that capture plasticity and damage have the 

following advantages:
1. Flexibility
2. Interpretability
3. Computational tractability

• However, they are limited in their accuracy due to assumptions required for closed 
form solutions

• Examples: Gurson [1] and Cocks-Ashby [2]
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Proposed Solution

• Utilize a machine learning approach known as genetic programming 
for symbolic regression (GPSR) to generate more accurate, data-
driven, interpretable material models
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Known Material Model

• Gurson model for porous metal plasticity
• Assumptions:

• Ignores void interaction
• Assumes voids grow self-similarly
• Assumes voids are arranged in a symmetric array
• Assumes a perfectly plastic von Mises matrix material
• Does not model void coalescence 
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Relax Model Assumptions

• Generate training data via finite element (FE) 
simulations

• Model is consistent with all assumptions Gurson 
makes except void interaction
• Representative volume element (RVE) with single void
• Nodes surrounding void are limited to spherical 

deformation
• Periodic boundary conditions (PBCs)
• Varying size of void
• 200 triaxial load cases
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Find New Model Using GPSR
• Symbolic regression searches space of known equations via combinations of 

variables and weights
• Genetic programming evolves equations based on fitness with data

• Fitness of implicit equations compares partial derivatives of proposed model with data

• Previous studies show GPSR can find known material models such as von Mises 
[4] and Gurson (unpublished)
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Find New Model Using GPSR

• Defining fitness for implicit equations
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Find New Model Using GPSR

• Leverage prior knowledge to generate models that are interpretable 
and abide by known physics:

• Boosting
• Seeding
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Find New Model Using GPSR

• Leverage prior knowledge to generate models that are interpretable 
and abide by known physics:

• Boosting – a machine learning strategy where many weak learners 
are combined to form one strong learner
• For each assumption relaxation:
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Find New Models Using GPSR
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• Boosting implementation:

• Datapoints with worse fit are weighted higher in next boosting 
stage

Iterate



Find New Models Using GPSR
• Boosting implementation:
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Boosting Test Results

• Train from the von Mises surface to the Gurson surface
• After 50,000 generations, the correct Gurson equation is found
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Find New Model Using GPSR
• Leverage prior knowledge to generate models that are interpretable 

and abide by known physics:
• Boosting
• Seeding – replacing a portion of the initial genetic population with 

”seeds” that will likely be in the final solution [5]
• Genetic population is typically randomly generated

• Seeding helps narrow in on search space
• Decreases training times, increases interpretability
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Seeding Results
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Equation Fitness

Gurson

0.094

GPSR

0.069

• Relaxing assumption 1: void interaction
• Replaced 10 percent of GPSR population with parts of Gurson equation
• Trained for 200,000 generations



Seeding Results
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• Relaxing assumption 1: void interaction
• Replaced 10 percent of GPSR population with parts of Gurson equation
• Trained for 200,000 generations
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Seeding Results
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• Main difference with/without seeding/boosting is generation of 
physically reasonable and interpretable results

Equation Complexity

With Seeding

12

Without Seeding (truncated)

31



Conclusions

• We can leverage prior knowledge to improve GPSR training on finite 
element model data

• Boosting can tie directly with relaxing assumptions to improve GPSR 
performance and improve interpretability of output equations

• Seeding the initial GPSR population reduces search space and 
improves final model fitness and interpretability

• Future Work: Apply these methods to further relaxed assumptions 
to generate more accurate models for real-world materials
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Questions?
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