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Gate Set Tomography of a Logical Qubit — @&

» Key takeaway: Gate set tomography shows promise as a tool for
characterizing logical qubits; questions remain!
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Open questions about logical qubits T

* How should we describe logical

IT
operations on logical qubits? .
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Open questions about logical qubits ) .

* How should we describe logical
operations on logical qubits? 2
= How should we characterize logical g
operations on logical qubits? =
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Open questions about logical qubits

* How should we describe logical
operations on logical qubits?

= How should we characterize logical
operations on logical qubits?

= What can we Jearn from logical qubit
characterization?

= - Can we build predictive and
debugging tools for logical qubits?
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Open questions about logical qubits ) .

* How should we describe logical
operations on logical qubits?

= How should we characterize logical
operations on logical qubits?

= What can we Jearn from logical qubit
characterization?

= - Can we build predictive and
debugging tools for logical qubits? o

= > Can we use (or adapt) existing
physical qubits frameworks for
understanding logical qubit behavior?




Understanding physical qubits
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This picture is roughly correct!
What about logical qubits?
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Why does QCVV work? ) &
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(This is the hope!)
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Logical GST

"1 Il“sa;brtli;]r%tllries
GST is a powerful tool for debugging
and predicting behavior of small

numbers of physical qubits. Can we use
GST on logical qubits?




Why GST? )

= GST works well for characterizing (physical) one- and two-qubit systems.

» Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography, Nat.
Commun. 8, 14485 (2017)

» Demonstration of a parametrically activated entangling gate protected from flux noise, Phys. Rev. A 101,
012302 (2020)

» Machine Learning of Noise-Resilient Quantum Circuits, Phys. Rev. X Quantum 2, 010324 (2021)

» Precision tomography of a three-qubit donor quantum processor in silicon, Nature, 601, 348-353 (2022)

»  Quantum logic with spin qubits crossing the surface code threshold, Nature, 601, 343-347 (2022)

= Ftc.

= GST does an excellent job of characterizing qubits that aren’t perfectly well-behaved
(exhibit leakage, drift, other non-Markovian errors) without necessarily understanding
or fully capturing those dynamics.

= Logical qubits should behave like nice two-level systems. If so, characterize with GST!
If not, capture violation of that model with GST. ;
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Gate Set Tomography - Review ) ..

Circuits: A collection of structured,

“process-tomography-like” circuits. <«— outcome

» Analysis: Maximum likelihood estimation

measure
on observed outputs prepare

= Qutput: Process matrix estimates for

quantum logic operations (gates, state do experiments
preparations/measurements). .
reui P HGHGHGHGHGHGHGHGHGHGHGH £
= Number of circuits <100 — 1000s 2] Ele

= Estimates are self-consistent and
Heisenberg-limited in accuracy; provide
built-in Markovianity check (how well
does the estimate fit the data?)
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Logical GST

= What does it even mean to “do logical GST”?
* Simple “naive” approach (don’t criticize me yet!)

= Take GST circuits and run them on a logical qubit
(simulation or experiment), promoting physical gates
to logical gates. (Button-pushes are logical operations
not physical. E.g., H>H®7)
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Logical GST )

= What does it even mean to “do logical GST”?
* Simple “naive” approach (don’t criticize me yet!)

= Take GST circuits and run them on a logical qubit

(simulation or experiment), promoting physical gates
to logical gates. (Button-pushes are logical operations

not physical. E.g., H>H®7)
= QOptional: Have a new button for QEC.




Logical GST- Let’s do it!

= Let’s do this on a simple logical gate set:
= Steane [|7,1,3]] code
= All-to-all CNOT connectivity
= {H, S, QEC} logical operations
= Simple error model:
= Only erroris 10% depolarization on physical S, ST (Sjeica=S®ST®S®SH...)
» Maximum germ depth is 16; 774 circuits.
= 1000 shots per circuit.

» Simulation run using Logical Qubit Simulator (LoQS)- a hybrid density matrix/Monte
Carlo simulation tool built on pyGSTi and Quantumsim (not yet publicly available, but
soon we hope!)

= 5.5 wall-clock-hours; 790 compute-hours. (Most of the time spent on circuits with rounds

of QEQ).




Logical GST )

= What’s it look like?!
= Look at physical GST first:

Nsigma

Figure 1. Model violation summary. Figure 2. Model violation per Figure 3. Histogram of per-circuit model violation. Table 1. Comparison of estimated gates to targets.
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Figure 1. Model violation summary.
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Figure 3. Histogram of per-circuit model violation.
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Table 1. Comparison of estimated gates to targets.
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Figure 1. Model violation summary.
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Figure 2. Model violation per
iteration.

Physical GST

Figure 3. Histogram of per-circuit model violation.
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Table 1. Comparison of estimated gates to targets.

Figure 3. Histogram of per-circuit model violation.

Figure 1. Model violation summary. Figure 2. Model violation per

iteration.
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Logical GST

= What happened?! Markovian physical qubits but non-Markovian logical

qubit?!

Logical GST- same physical error model
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Figure 1. Model violation summary.
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= What happened?! Markovian physical qubits but non-Markovian logical
qubit?!

= QEC makes previous gates better. This is explicitly not Markovian.
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Logical GST- same physical error model

Figure 2. Model violation per
iteration.

Figure 3. Histogram of per-circuit model violation.

Table 1. Comparison of estimated gates to targets.
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Logical GST

» What should the “API” for logical
GST be?

= As you may have expected, we do
not want a “QEC button”. (Or
work out valid way to model QEC
operations within GST
framework.)

= Follow every logical gate with a
round (or more) of QEC.

E.g., GX 9 GXGQEC




Logical GST — Take 2

= Each button implements transversal gate
followed by one round of QEC.

= H: 102 depolarization

= S, ST 1.7*10! over-rotation (same
infidelity as H)

= CNOT: 2*102 depolarization
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Logical GST — Take 2 )

Figure 1. Model violation summary. Figure 2. Model violation per Figure 3. Histogram of per-circuit model violation. Table 1. Comparison of estimated gates to targets.
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= [t works!
= Even a stochastic-only model fits the data!
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Figure 1. Model violation summary. Figure 2. Model violation per Figure 3. Histogram of per-circuit model violation. Table 1. Comparison of estimated gates to targets.
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= [t works!
= Even a stochastic-only model fits the data!
= What about a range of CNOT depolarizations?
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= Behavior is mostly as expected, though somewhat high /N, values. ...some
subtle non-Markovian effect?
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Conclusions i) e

= There exist regimes in which logical qubit operators are well-modeled by
(Markovian) single-qubit process matrices.

= GST can be extended to logical qubits to learn those process matrices.

= The full scope of logical GST’s applicability and utility remains an open
question.

= What about other codes? What about non-fault-tolerant operations? Can we extract
useful information from syndrome data? Does pseudothreshold matter? Etc.
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