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A Problem With QCVV () s

* In real QCVV experiments it is the norm to find that our
models fail to fully predict the data they are fit from. | R
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* Sometimes this is expected. As when simplifying
assumptions intentionally neglect some effects which
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* In practice this happens even when fitting the largest T
class of Markovian models supported by our methods, | 1 O R
indicating non-Markovianity. Cecutt Depth
* This problem is especially relevant to gate set Fitting a depolarizing channel to RB data simulated
tomography (GST), but also arises in essentially all using a gate set with a mix of stochastic and

coherent errors. The model is clearly incomplete
and as such there is substantial dispersion about
the predictions.

model-based QCVV protocols.

E. Nielsen et al. New J. Phys. 23 093020 (2021)
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Model Violation Ishoraterios

* How can we know a model is violated? We can retroactively inspect the quality of the fit by
asking: Does this model fit the data as well as we’d expect given solely finite-sample
fluctuations?

* Quantitatively, we use log-likelihood ratio statistics and Wilks” Theorem:

Theorem. Let L be the likelihood an estimated model produced a data set and
Lonaz the likelihood of a saturated model which fits the data exactly. If the
estimated model is valid the log-likelihood ratio statistic will be X% distributed,

LLRS = 2(10g(Lmaz) — log(L)) ~ X3

where k is the difference in the number of paramaters between the models.

* For a 2-outcome measurement this implies that the per-circuit contributions to the log-
likelihood ratio should be approximately X? distributed.
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* How can we know a model is violated? We can retroactively inspect the quality of the fit by
asking: Does this model fit the data as well as we’d expect given solely finite-sample
fluctuations?

o —— i Distribution
2 Distribution of the per-circuit log-likelihood
ratio contributions for a model fit using the
largest class of Markovian models supported
by GST on experimental data from the SNL
trapped ion group.
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Log-Likelihood Ratio Statistic

Another way of phrasing this problem: The data are further from the predictions than we expect. i.e. they
are overdispersed.
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Why Does This Matter? @ e

- Intrinsic coherant armor HZY = -0.7(3)% =9%
I Relational coherent error H77 — .1 .-TI:.:"rEI y 896

* There is an inherent tension between the high Bl Stochastic error v
. . =7 %%

levels of precision reported by our model
parameter estimates and the fact that we know Xl = OA(11% e
these models can’t be fully correct. HYI = -u.at?.}%}* 5%
HZI = -2.8(3)%

HIY = 1.2(3)%
)% L,
‘_{mz - 0.3@)% [**

* One may argue: we never claimed the models

. . v =3%
were literally correct, taking the models too HIX = -2.1(1)% -
seriously is user error. If you take these methods SZ| = 2.06(5)%—> SIX = 0.14(4)%

’ . . SIY = 0.1(2)% 1%
off-label you can’t be surprised that there are side- SIZ = 0.4(2)%
effects... 7 0%
Ql Q2
* In the real world end-users do take the results of Estimated error rates for an R.(%) gate on a
modeling seriously and use insights derived models silicon donor system obtained using GST show
to evaluate device performance and imperfections. unambiguous signatures of anomalous 2-qubit

entangling ZZ interactions. This led to the
discovery of unexpected physics in the device.

Madzik, M.T., et al. Precision tomography of a three-qubit donor
quantum processor in silicon. Nature 601, 348—-353 (2022)
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What Should We Do About Model Violation? @ Labovaies

* We propose the following:

* Let’s promote the overdispersion in our data from simply being an indication
of the failure of our models to a quantity which we can statistically model in
and of itself.

* What does modeling the overdispersion directly achieve?

* We will create, by construction, a model consistent with the data, even with
data inconsistent with any non-overdispersed Markovian model.

* Even a single overdispersion parameter will be sufficient in practice to restore
consistency.

* It naturally inflates the confidence intervals for model parameter estimates,
more honestly accounting for uncertainty.
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* Current Proposal: Systematically weaken the predictions of our model by, instead of reporting a

probability distribution over circuit outcomes, reporting a distribution over probability distributions for
each circuit.

* The width of the distribution over distributions is parameterized by an overdispersion parameter fit from
the data.

* A set of overdispersion parameters with a set of rules for associating circuits with them is an
overdispersion model.



How Do We Model Overdispersion?

* The Dirichlet-multinomial ansatz is
adopted for the generation of
overdispersed count data.

* Operationally this is broken into two
steps:

1.

Sample a probability vector from a
Dirichlet distribution centered on the
base model’s prediction.

Sample counts from a multinomial
distribution according to this
probability vector.

&)

000 0.17 0.33 0.50 0.67 0.63 1.0
P2
Dirichlet distribution with

Elpo] = [p1] = E[ps] = 3

ag = 10

Comparision of binomial
distribution with n = 100,p = .5
and beta-binomial distribution
with n = 100, Ep| = .5, ag = 100

0.00 0.17 0.33 0.50 0.67

P2

0.83 1.00

Dirichlet distribution with

Elpo| = .6, E[p1| = E|p2] = .2
Qp = 10

___________

Sandia
National
Laboratories

I Einomial
Beta-Binomial




Sandia
- : : National
The Dirichlet-Multinomial Ansatz @wbmmms
* The likelihood a set of counts {no, - -+ , K —1} for a circuit c is generated by an overdispersed model is:

[(5-)F(n+1) 5=t T(ng + 5~ Elpr])
L(n+5-) oo DG Elpk])T (n + 1))

®0.. = Overdispersion Parameter

C

°In practice it is more convenient to work with the log-likelihood:

o1 () - 52)

+ Kz_:llog (r (nk + qbi’CEka])) — log (r (cbi’CE[pk])) — log (I'(nx + 1))

k=0

*The overdispersion parameters are fit using MLE over the total log-likelihood for a set of circuits C

o o () ot o )
N [’:Z:;log (I‘ (nk 4 qbi,cE[pk])) — log (F (cbi,cE[pk])) — log (I'(ng + 1))}
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The simplest model of overdispersion is the single parameter model where the overdispersion
parameters, ©0.c, are equal for every circuit.
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Per-circuit log-likelihood ratio distribution under the Distribution with a single overdispersion parameter.

standard multinomial ansatz.
Total log-likelihood: lc = —8111 Ale = 60 Total log-likelihood: l¢ = —8051

Total log-likelihood ratio is consistent with Wilks’ Theorem.




More Sophisticated Overdispersion Models

* Given the success of the single . 10 2 Distrbation
overdispersion parameter model, what is Multinomial
. . .. . 02 4 Dirichlet-Multi ial
the value in more sophisticated multi- a riehierHutinomia
parameter models? 8 .l
£
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issues with the total log-likelihood, but there are
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still problems with the per-circuit distribution.
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The “per-iteration” model
course-grains the circuit depth
and assigns a different
overdispersion parameter to
each.

The “per-depth” model
overdispersion parameter to
each depth (sans course-
graining).




More Sophisticated Overdispersion Models

Single Parameter
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Total log-likelihood: [ = —8051

Al = 60

# Additional Parameters: 1
v = 60

2Al1 0

Evidence Ratio: v =

Ak
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Total log-likelihood: [, = —7995

Ale = 116
# Additional Parameters: 9
v =12.9

# Circuits
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Per-Depth
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Total log-likelihood: [, = —7960
Ale = 151

# Additional Parameters: 57
v = 2.6

where Ak is the change in the number of parameters.
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Summary Laboratories

* In real QCVV experiments it is the norm to find that our models fail to predict
the data they are fit from as well as we’d expect.

* There is an inherent tension between the high levels of precision we can
achieve in our model parameter estimates and the fact that we know these
models can’t be fully correct.

* Overdispersion models allow us to systematically relax the predictions of our
models in order to restore consistency with the experimental data.

* This can be achieved at the cost of very few additional parameters in practice.

* Overdispersion models are compatible with the standard tools of statistical
model analysis and model selection, and provide a new tool for the
quantification of unmodelled effects in QCVV analysis.



