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A Problem With QCVV

• In real QCVV experiments it is the norm to find that our 
models fail to fully predict the data they are fit from.

• Sometimes this is expected. As when simplifying 
assumptions intentionally neglect some effects which 
may turn out to have been important

• In practice this happens even when fitting the largest 
class of Markovian models supported by our methods, 
indicating non-Markovianity.

• This problem is especially relevant to gate set 
tomography (GST), but also arises in essentially all 
model-based QCVV protocols.

Fitting a depolarizing channel to RB data simulated 
using a gate set with a mix of stochastic and 
coherent errors. The model is clearly incomplete 
and as such there is substantial dispersion about 
the predictions.

E. Nielsen et al. New J. Phys. 23 093020 (2021)
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Model Violation
• How can we know a model is violated?  We can retroactively inspect the quality of the fit by 
asking: Does this model fit the data as well as we’d expect given solely finite-sample 
fluctuations?

• Quantitatively, we use log-likelihood ratio statistics and Wilks’ Theorem:

• For a 2-outcome measurement this implies that the per-circuit contributions to the log-
likelihood ratio should be approximately        distributed.
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Model Violation
• How can we know a model is violated?  We can retroactively inspect the quality of the fit by 
asking: Does this model fit the data as well as we’d expect given solely finite-sample 
fluctuations?

Another way of phrasing this problem: The data are further from the predictions than we expect. i.e. they 
are overdispersed.

Distribution of the per-circuit log-likelihood 
ratio contributions for a model fit using the 
largest class of Markovian models supported 
by GST on experimental data from the SNL 
trapped ion group.
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Why Does This Matter?

• There is an inherent tension between the high 
levels of precision reported by our model 
parameter estimates and the fact that we know 
these models can’t be fully correct.

• One may argue: we never claimed the models 
were literally correct, taking the models too 
seriously is user error. If you take these methods 
off-label you can’t be surprised that there are side-
effects…

• In the real world end-users do take the results of 
modeling seriously and use insights derived models 
to evaluate device performance and imperfections.

Estimated error rates for an               gate on a 
silicon donor system obtained using GST show 
unambiguous signatures of anomalous 2-qubit 
entangling ZZ interactions. This led to the 
discovery of unexpected physics in the device.

Mądzik, M.T., et al. Precision tomography of a three-qubit donor 
quantum processor in silicon. Nature 601, 348–353 (2022)
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What Should We Do About Model Violation?

• We propose the following:
• Let’s promote the overdispersion in our data from simply being an indication 

of the failure of our models to a quantity which we can statistically model in 
and of itself.

• What does modeling the overdispersion directly achieve?
•We will create, by construction, a model consistent with the data, even with 

data inconsistent with any non-overdispersed Markovian model. 
• Even a single overdispersion parameter will be sufficient in practice to restore 

consistency.
• It naturally inflates the confidence intervals for model parameter estimates, 

more honestly accounting for uncertainty.
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How Do We Model Overdispersion?

• Current Proposal: Systematically weaken the predictions of our model by, instead of reporting a 
probability distribution over circuit outcomes, reporting a distribution over probability distributions for 
each circuit.

• The width of the distribution over distributions is parameterized by an overdispersion parameter fit from 
the data.

• A set of overdispersion parameters with a set of rules for associating circuits with them is an 
overdispersion model.

Prior Art: 
•Wildcard Error:  arXiv:2012.12231, R. Blume-Kohout, K. 
Rudinger, E. Nielsen, T. Proctor, and K. Young   
•Ad-hoc and inconsistent with standard tools for 
statistical model analysis.
•Still useful as a heuristic for unmodelled effects.
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How Do We Model Overdispersion?

• The Dirichlet-multinomial ansatz is 
adopted for the generation of 
overdispersed count data.

• Operationally this is broken into two 
steps:

1. Sample a probability vector from a 
Dirichlet distribution centered on the 
base model’s prediction.

2. Sample counts from a multinomial 
distribution according to this 
probability vector.
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The Dirichlet-Multinomial Ansatz
• The likelihood a set of counts                                for a circuit c is generated by an overdispersed model is:

•In practice it is more convenient to work with the log-likelihood:

•The overdispersion parameters are fit using MLE over the total log-likelihood for a set of circuits

          

9



The simplest model of overdispersion is the single parameter model where the overdispersion 
parameters,         , are equal for every circuit.

Single Parameter Overdispersion Model

Per-circuit log-likelihood ratio distribution under the 
standard multinomial ansatz.

Distribution with a single overdispersion parameter.

Total log-likelihood: Total log-likelihood:

Total log-likelihood ratio is consistent with Wilks’ Theorem.
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More Sophisticated Overdispersion Models
• Given the success of the single 
overdispersion parameter model, what is 
the value in more sophisticated multi-
parameter models?

The single parameter model resolves consistency 
issues with the total log-likelihood, but there are 
still problems with the per-circuit distribution.

The “per-iteration” model 
course-grains the circuit depth 
and assigns a different 
overdispersion parameter to 
each.

The “per-depth” model 
overdispersion parameter to 
each depth (sans course-
graining).
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More Sophisticated Overdispersion Models
Single Parameter Per-Iteration Per-Depth

Total log-likelihood: Total log-likelihood: Total log-likelihood:

# Additional Parameters: 1 # Additional Parameters: 9 # Additional Parameters: 57 
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Summary

• In real QCVV experiments it is the norm to find that our models fail to predict 
the data they are fit from as well as we’d expect.
• There is an inherent tension between the high levels of precision we can 
achieve in our model parameter estimates and the fact that we know these 
models can’t be fully correct.
• Overdispersion models allow us to systematically relax the predictions of our 
models in order to restore consistency with the experimental data.
• This can be achieved at the cost of very few additional parameters in practice.
• Overdispersion models are compatible with the standard tools of statistical 
model analysis and model selection, and provide a new tool for the 
quantification of unmodelled effects in QCVV analysis.
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