
Benchmarking a Bio-inspired SNN on a Neuromorphic System
Luke Parker

lgparke@sandia.gov
Sandia National Laboratories

Albuquerque, New Mexico, USA

Frances S. Chance
fschanc@sandia.gov

Sandia National Laboratories
Albuquerque, New Mexico, USA

Suma G. Cardwell
sgcardw@sandia.gov

Sandia National Laboratories
Albuquerque, New Mexico, USA

ACM Reference Format:
Luke Parker, Frances S. Chance, and Suma G. Cardwell. 2022. Benchmarking
a Bio-inspired SNN on a Neuromorphic System. In Neuro-Inspired Computa-
tional Elements Conference (NICE 2022), March 28-April 1, 2022, Virtual Event,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3517343.
3517365

INTRODUCTION
Neuromorphic computing aims to derive the benefit of computa-
tional dynamics observed in biological neural systems. This has led
to novel non-Von Neumann device architectures and algorithms
that operate in the spiking domain. Large, densely-connected neural
networks on a traditional device consume more power than their
biological counterparts, especially when accounting for both train-
ing and inference. Neuromorphic devices present an opportunity
to place these large, densely-connected networks on architectures
that more closely resemble biological neural systems. By placing
these networks in silicon, researchers in both engineering and neu-
roscience can better understand the cost and constraints of using
neural dynamics for computation in a synthetic system.

Performing computation with spikes is one of the major differ-
ences between artificial neural networks (ANNs) and spiking neural
networks (SNNs). This difference is most pronounced when using
a computing architecture designed to handle spiking computation
such as a neuromorphic device. By implementing a SNN on both a
traditional Von Neumann device, like a CPU, and a neuromorphic
device, the benefits of using a native spiking architecture can be
compared and analyzed. To that end, this work introduces initial find-
ings in comparing the computational efficiency between a traditional
and neuromorphic platform when implementing a bio-inspired SNN.
[3] These findings contribute to the growing body of benchmark liter-
ature that highlight the performance benefits of using neuromorphic
devices for bio-inspired neural network designs.

The bio-inspired SNN is a simplified, spiking version of the
neural network found in [3], and consists of two densely-connected
layers as shown in Figure 1. The network is driven by stimulating
the input layer to cause network activity, and the weights of the
network are fixed as no learning occurs in the model.

The neuromorphic platform chosen for this work is Intel’s Loihi,
a neuromorphic chip supporting 128,000 neurons and 128 million
synapses on a single chip. [4] The computation is digital, but exe-
cutes using spiking dynamics inspired by neural systems. The SNN

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
NICE 2022, March 28-April 1, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9559-5/22/03.
https://doi.org/10.1145/3517343.3517365

Figure 1: Comparing performance of a densely-connected
SNN when implemented on both traditional and neuromor-
phic platforms.

is executed using this device, and the results are compared to the
SNN implementation on an Intel XeonW-2123 processor, the choice
for the traditional computing platform.

The SNN is implemented on Loihi using single-compartment
neuron primitives for each layer with all-to-all connectivity. The
weights are converted to 8-bit precision due to memory constraints.
The first layer is stimulated by using a bias parameter that causes
its neurons to accumulate charge until a certain threshold. This
approach simulates external input stimulating the first layer’s neu-
rons.

The custom CPU implementation consists of a matrix represent-
ing the spiking state of the first-layer neurons due to an external
stimulus. As such, each element of the matrix is 0 or 1 at timestep 𝑡 ,
where 1 indicates a spike to be transmitted. The weights defining
the connection strengths between the first and second layers use
floating-point precision. When a neuron in the first layer transmits
a spike, the connected neurons of the second layer accumulate
charge proportional to the associated connection weights.

EXPERIMENTAL SETUP
Different software tools were used to gather profiling numbers on
power consumption, energy consumption, and execution time of the
SNN on both Loihi and the CPU. For Loihi, the built-in energy and
execution time probes of Intel’s NxSDK 0.9 APIwere used, providing
estimates for power consumption and execution time directly from
the chip. For the CPU, the package pyJoules [6] was used, which
acts as a Python wrapper for Intel’s RAPL technology, providing
estimates for CPU package and DRAM power consumption along
with the execution time of decorated Python functions.

Experiments were set up to gather data for both Loihi and CPU
by writing Python scripts that collected measurements of each
device while executing the SNN under two different conditions:
Spikes and No Spikes. In the Spikes condition, the neurons of the
first layer of the SNN fire simultaneously at each timestep, whereas

SAND2022-2297CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

https://doi.org/10.1145/3517343.3517365
https://doi.org/10.1145/3517343.3517365
https://doi.org/10.1145/3517343.3517365


NICE 2022, March 28-April 1, 2022, Virtual Event, USA Luke Parker, Frances S. Chance, and Suma G. Cardwell

in the No Spikes condition, no stimulus is present in the network.
These two cases portray maximum network activity and minimum
network activity, respectively.

Each experiment is characterized as a workload, which is defined
as a sweep over network sizes consisting of 𝑁 2 neurons in both
network layers for 𝑁 = 1, 2, 3, ..., 30, so each network consists of
a total of 2𝑁 2 neurons. Workloads for both Loihi and CPU were
executed several times consecutively to collect enough samples for
statistical integrity. The power, energy and execution time data is
provided by averaging the sample measurements post-execution.

Loihi Experiment
The NxSDK energy probes used for recording Loihi data return
measurements from the board’s host CPU, which gathers power
consumption data using an onboard sensor. This data is recorded as
a function of the host CPU’s clock and is reconciled with the times-
tamps associated with the asynchronous algorithmic timesteps
of the SNN’s execution. An algorithmic timestep consists of of
different “phases" pertaining to spike transmision, learning rule
calculations, state updates, and optional embedded code used to
interact with the SNN.

The energy and execution time of these different phases can be
captured by the probe to observe what processes or components
most impact the total power consumption. An example is shown in
the top plot of Figure 2, where the total Core power consumption
(neurocores, embedded processor, mesh router, etc.) and SRAM
power consumption (memories in the embedded processor and neu-
rocores) are plotted for a single group of neurons that increases in
size on a per core basis. The bottom plot shows a breakdown of each
power measurement for two types of contributions: neurocore up-
dates and background activity. The power consumed by neurocore
updates represents the cost of processing and transmitting spikes
in the network, whereas the background activity is the remaining
amount of power consumed by the board.

Figure 2: Breakdown of Power Components from an Example
Group of Spiking Neurons on Loihi.

In Figure 2, the example group of neurons is internally stimulated
using a bias parameter to spike on each timestep. These data are
compared to the same group of neurons exhibiting no spiking
activity in Figure 3, which indicates that spiking activity for a
group of neurons does not significantly impact the chip’s measured
power consumption.

Figure 3: Stimulus of the Example Neuron Group does not
significantly impact Power Consumption for smaller SNNs.

When executing the SNN, the Core and SRAM power contribu-
tions were recorded for each network size. Although the contribu-
tion of the background activity (the largest consumer of power per
Figure 2) are considered in the totals used in comparing the CPU
data, the contribution of the neurocores’ activity was of particular
interest.

Figure 4: Power consumed by neurocores on Loihi as SNN
increases in size.

Shown in Figure 4 is comparison of the neurocore power con-
sumption under no-spiking and spiking conditions. As the number
of neurons in the SNN increase, the number of required neuron-
state updates increases, even without spikes needing to be pro-
cessed (shown by the left plot in Figure 4). However, when the first
layer has spikes to transmit, the densely-connected SNN consumes
additional power due to increased neurocore activity.



Benchmarking a Bio-inspired SNN on a Neuromorphic System NICE 2022, March 28-April 1, 2022, Virtual Event, USA

Figure 5: Comparison between Power, Energy, and Execution Time of SNN on both CPU and Loihi.

CPU Experiment
For the CPU, initial RAPL measurements were recorded for a short
period of time before executing the workload script. These initial
numbers provided power consumption in the CPU’s “idle" state
that account for the contribution of system background processes
that are unrelated to the SNN’s power consumption. Data from
the entire CPU package and DRAM were recorded during each
workload sweep, and the units of each measurement were scaled
to match the units of the Loihi data.

RESULTS
Shown in Figure 5 is a comparison of the SNN’s performance be-
tween Loihi and CPU implementations. For Loihi measurements,
we used the total power, energy, and execution time per timestep.

Noting the logarithmic y-axes used in Figure 5, the Loihi imple-
mentation exhibits better performance in both No Spikes and Spikes
conditions in energy used and execution time. Regarding energy
per timestep, the average difference between the Loihi and CPU
networks is on the order of 103 and 104 for No Spikes and Spikes,
respectively. As for execution time, the differences are on the order
of 102 and 103. Also, the average difference in power used in the
Loihi network for both conditions is under 10 mW, which is signifi-
cantly lower than the difference for the CPU network, indicated by
the top plot of Figure 5.

Overall, these results provide additional evidence to the grow-
ing body of benchmarking literature for neuromorphic platforms
[1] [2] [5] [7] [8], demonstrating that a device like Loihi can exe-
cute network calculations faster and with greater efficiency than a
traditional computing device.

DISCUSSION
This brief inspection of a neuromorphic architecture’s compu-
tational performance promotes the plausibility of executing bio-
inspired neural networks, and more importantly highlights some
of the advantages of executing such networks on alternative com-
puting platforms. On Loihi, the energy consumed per timestep and
execution time of the network are order of magnitudes smaller
than the custom CPU implementation, even as the network size
increases. Furthermore, the power consumed by Loihi is not sig-
nificantly impacted by the SNN’s spiking activity. This makes a
neuromorphic device more appealing than a traditional processors
for applications requiring low size, weight, and power constraints.

Scale and complexity are considerations left for future work,
which will involve more complex neuron models, more advanced
implementations on each platform, and larger, distributed network
topologies. Also of interest are comparisons of Loihi with an op-
timized version of the custom CPU implementation and a custom
SNN made for deployment on a mobile GPU device.



NICE 2022, March 28-April 1, 2022, Virtual Event, USA Luke Parker, Frances S. Chance, and Suma G. Cardwell

ACKNOWLEDGEMENTS
This work was supported by Laboratory Directed Research and
Development program at Sandia National Laboratories. Sandia Na-
tional Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell Interna-
tional, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

This paper describes technical results and analysis. Any subjec-
tive views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy
or the United States Government. SAND Number: SAND202X-XXX

REFERENCES
[1] Peter Blouw, Xuan Choo, Eric Hunsberger, and Chris Eliasmith. 2019. Benchmark-

ing Keyword Spotting Efficiency on Neuromorphic Hardware. In Proceedings of the
7th Annual Neuro-Inspired Computational Elements Workshop (Albany, NY, USA)
(NICE ’19). Association for Computing Machinery, New York, NY, USA, Article 1,
8 pages. https://doi.org/10.1145/3320288.3320304

[2] Peter Blouw and Chris Eliasmith. 2020. Event-Driven Signal Processing with
Neuromorphic Computing Systems. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 8534–8538. https:

//doi.org/10.1109/ICASSP40776.2020.9053043
[3] Frances S. Chance. 2020. Interception from a Dragonfly Neural Network Model.

In International Conference on Neuromorphic Systems 2020 (Oak Ridge, TN, USA)
(ICONS 2020). Association for Computing Machinery, New York, NY, USA, Article
21, 5 pages. https://doi.org/10.1145/3407197.3407218

[4] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty,
Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan,
Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 38, 1
(2018), 82–99. https://doi.org/10.1109/MM.2018.112130359

[5] Mike Davies, AndreasWild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A. Fon-
seca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. 2021. Advancing
Neuromorphic Computing With Loihi: A Survey of Results and Outlook. Proc.
IEEE 109, 5 (2021), 911–934. https://doi.org/10.1109/JPROC.2021.3067593

[6] Spirals Research Group. 2021. pyJoules: A Python library to captuer the energy
consumption of code snippets. University of Lille and Inria. https://github.com/
powerapi-ng/pyJoules

[7] Garrick Orchard, E. Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn,
Sumit Bam Shrestha, Friedrich T. Sommer, and Mike Davies. 2021. Efficient
Neuromorphic Signal Processing with Loihi 2. In 2021 IEEE Workshop on Signal
Processing Systems (SiPS). 254–259. https://doi.org/10.1109/SiPS52927.2021.00053

[8] Guangzhi Tang, Neelesh Kumar, and Konstantinos P. Michmizos. 2020. Re-
inforcement co-Learning of Deep and Spiking Neural Networks for Energy-
Efficient Mapless Navigation with Neuromorphic Hardware. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 6090–6097.
https://doi.org/10.1109/IROS45743.2020.9340948

https://doi.org/10.1145/3320288.3320304
https://doi.org/10.1109/ICASSP40776.2020.9053043
https://doi.org/10.1109/ICASSP40776.2020.9053043
https://doi.org/10.1145/3407197.3407218
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://github.com/powerapi-ng/pyJoules
https://github.com/powerapi-ng/pyJoules
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1109/IROS45743.2020.9340948

	References

