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Titanium hydride applications

 Intermediate in HDH Ti powder production

 Blowing agent for metal foam

 Powder metallurgy and additive 
manufacturing

 Hydrogen storage
 Energy applications
 Release of high-purity hydrogen

 Model system
 Similar concerns with other metal hydrides
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Need for precision hydrogen quantitation in hydrogen-
rich (up to several wt. %) materials. 
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Corgnale, et al, Int J Hydrogen Energy 2016



H-Ti Phases
 Phases present: ᵯ� -Ti, β-Ti, and δ-TiHx
 Potentially γ- and ε-TiHx

 Coexistence of multiple phases

 Significant capacity to absorb oxygen

 Hydrogen release starting at 250 to 350 ˚C
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Important to quantify phases present and hydrogen content.

δ-TiH2 Unit cell rendered in VESTA
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Relevant analytical techniques

 Heating + desorbed gas analysis
 Optical, pressure, or mass spec (MS) detection
 Inert gas fusion (LECO) 

 Heating + gravimetric analysis
 Thermogravimetric analysis (TGA), quartz crystal 

microbalance

 Combined thermal techniques
 Improved accuracy by comparing different data
 Simultaneous TA (STA Netzsch TGA-MS)

 X-ray Diffraction (XRD)
 Fast and nondestructive
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How do we verify both hydrogen content and phase purity?

LECO Corp.

Via Wikimedia Commons , user Freundchen

Netzsch Group



Chemical Analysis (ICP-OES and –MS)

 Commercial (Alfa Aesar) powder 

 Nominally TiH2

 Total metallurgical impurities ≈ 600-700 
ppm (0.06-0.07 wt. %)

 Consistent fractions of Fe, Cr, Ni, and Zr
 Likely associated with stainless steel vessels 

used in synthesis

 Decrease in Mg, Na, Ca, Zn
  Likely associated with Ti synthesis processes
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Results consistent across samples and 
representative of TiHx.



Inert Gas Fusion (LECO Elemental Analyzer)

 Process: 
 Thermal desorption
 Reaction with oxygen
 IR detection cells

 Typically calibrated and used 
in the range of ≈ 1 to 100 
ppm. (0.001 to 0.01 wt. % H)

 Capable of extended range 
with proper calibration 
(Babikhina, et al, Metals 2018.)

 Commercial “TiH2” may 
actually be TiH1.8X or TiH1.9X
 And may contain significant O!

 Calibrated here with ZrH2, 
TiH2, MgH2 (≈ 2, 4, and 8 wt. % 
H)
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Delivers promising, consistent results but certified hydrogen reference materials are not available. 

TiH2 TiH1.75 TiH1.65 TiH1.55

Meas. Theory Meas. Theory Meas. Theory Meas. Theory
H (Wt. 

%) 4.01 4.04 3.52 3.55 3.09 3.36 2.16 3.16



TGA-MS7

 Process:
 Thermal desorption
 Continuous TG and MS detection

 MS signal is highly precise and 
accurate, but sample introduction 
causes uncertainties
 Gas flow rate
 Ionization source drift over time
 Quantitative mass loss possible, but 

mostly in specialized instruments 
(Behrens, Rev Sci Instr 1987.)

 TG signal must be scrutinized
 Impurities in carrier gas
 Heating rate and hold time 

Abundance of useful information but results cannot be taken at face value.



TGA-MS8

Standards would be useful but careful calibration and correction provide a path forward.

 TG
 Linear correction often sufficient if hydrogen loss 

rate is high enough

 MS 
  Known volumes of gas injected to establish a 

calibration curve for MS signal
 Establishes an analytical technique that can 

quantitate hydrogen over time despite irregular 
peaks and simultaneous release of other species.



X-ray diffraction9

Quick analysis and includes phase information.

 In δ-TiH2 the Ti atoms sit on an FCC 
lattice with the 8 tetrahedral sites 
occupied with hydrogen

 Random, fractional occupancy of 
interstitial sites in sub-stoichiometric δ-
TiHx
 Lattice parameter proportional to hydrogen 

occupancy

 δ-TiHx  is stable down to x ≈ 1.54
 ᵯ� -Ti or β-Ti nucleates at lower concentrations
 A second phase shows up as different peaks

 Phase quantitation possible via Rietveld 
refinement

δ-TiH2 Unit cell rendered in VESTA

Nominal 
composition

Calculated 
composition

1.45 n/a

1.55 1.56

1.65 1.58

1.75 1.76

2.00 1.96



X-ray diffraction10

Still reliant on computed or measured reference and signal not unique to hydrogen.

Figure of Mined Literature 
data

 XRD studies of TiHx go back decades
 However, some (especially older) 

samples are of questionable purity
 Shows a definite linear relationship
 Can be overcome by establishing a few 

standard hydrogen compositions and 
creating a calibrated database.

 Concerns
 Other factors may cause peak shifts
 Material: presence of impurities and strain
 Instrument: Z-Height, optic misalignment, 

thermal expansion



Summary11

 Precision quantification of hydrogen in hydrogen-rich TiHx remains challenging

 Composition may include multiple phases of varying hydrogen content
 Important to consider total hydrogen content and phase fractions

 Explored several techniques that can provide complementary information

 Need for high-hydrogen standards (0.1 to several wt. % hydrogen)
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