SAND2022-2272C

This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

Sandia
National
Laboratories

Challenges and Suggested Solutions to
Sustainable Build, Test, and Integration
Processes in CSE Software Ecosystems

T E—--‘{'_'m }-i_'u o —

® s = —
E’“’,Z .I_'i}_ L | | c1 bl c2 |

Roscoe A. Bartlett
Department 1424
Software Engineering and Research

©ENERGY NISH

Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

SAND2021-15212 PE

February 25, 2022
SIAM Parallel Computing Conference, 2022

https://bartlettroscoe.github.io/

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

https://bartlettroscoe.github.io/

Bartlett: Build, Test, and Integration Efforts in CSE Software ml

« 2001-2010: Trilinos numerical algorithms development (https://trilinos.org)
* Contributed to many Trilinos packages (5K+ commits)
« Build and integrations with research and production application codes and Trilinos
« 2005: Co-developed of Makefile.export.<package> system for Trilinos autotools build system
« Scalable package-based architecture for Makefile-based build systems
« 2007: Lead ASC Vertical Integration milestone (pioneered APP+Trilinos integration processes)
« 2008-present: Took over transition and maintenance of Trilinos build system to CMake
« Scalable architecture for large CMake projects 8 years before well supported by modern CMake 3.7
« 2008-present: Lead numerous contracts with Kitware to extend CMake, CTest and CDash
« CMake: e.g.: Ninja support for Fortran, improved parallel build performance for Ninja
« (Test: e.g. Parallel running of tests, test resource allocation control (for GPUs)
« (Test, CDash: e.g. Asynchronous submits and processing, subproject support, improved query filters l
I

« 2010-2016: Infrastructure team lead and integration architect for DOE CASL project (Consortium for the
Advanced Simulation of Light-water reactors) (https://casl.gov/)
« Multi-institution, multi-team, multi-repository development and integration workflows
« 2015: Initial co-author of Exascale Computing Project xSDK Community Package Policies
« 2016-2020: Tool and Development Environment Lead for SNL ATDM project
« Lead stabilization of Trilinos on pre-exascale platforms (largest in Trilinos history)
« Developed integration plans for Trilinos and ATDM application codes
« 2019: Developed prototype for tools and third-party library installation system using Spack => SNL SEMS Spack-CM
« 2021-present: Refactoring Trilinos/CMake build system to modern CMake
 Initial goal: Maintain backward compatibility for thousands CMakeLists.txt files and thousands of user configure I
scripts in all environments! 2 I

https://trilinos.org
https://casl.gov/
https://figshare.com/articles/journal_contribution/xSDK_Community_Package_Policies/4495136

Overview of CASL ml
ErrR ML G i

NC STATE OAK Sandia |
UNIVERSITY RIDGE e m Westinghouse

CASL: Consortium for the Advanced Simulation of Lightwater reactors
DOE Innovation Hub including DOE labs, universities, and industry partners
Goals:

* Advance modeling and simulation of lightwater nuclear reactors

* Produce a set of simulation tools to model lightwater nuclear reactor cores to provide to the

nuclear industry: VERA: Virtual Environment for Reactor Applications.

Phase 1: July 2010 — June 2015
Phase 2: July 2015 — June 2020
Organization and management:

 ORNL is the hub of the Hub
* Milestone driven (6 month plan-of-records (PoRs)) |
* Focus areas: Physics Integration (PHI), Thermal Hydraulic Methods (THM), Radiation I

Transport Methods (RTM), Advanced Modeling Applications (AMA), Materials Performance and
Optimization (MPO), Validation and Uncertainty Quantification (VUQ)

CASL VERA Development Overview (2016)

* VERA development was complicated in almost every way ®
* VERA composed of:
« 21 different Git repositories (clones of other repos)
« Different access lists for each Git repository (NDAs, Export Control, IP, etc.)
* Integrating development efforts from many teams from 9+ institutions
+ Single large CMake build system using TriBITS CMake Framework:
« Very large full source code base:
« 55K source and script files
 12M lines of code (not comments)
« 2,700 CMakelLists.txt files
« 229 packages + subpackages enabled (out of 496 total) = 46% of full code base
* Most CMake developer reconfigures take place in less than 30 seconds!
« VERA Software Development Process:
* VERA integration maintained by continuous and nightly testing:

* Pre-push Cl testing: checkin-test-vera.sh, cloned VERA git repos
» Post-push Cl testing: CTest/CDash, all VERA git repos |
* Nightly testing: MPI and Serial builds, Debug and Release builds, ... I

« Main 100% passing builds and tests most days!
* Many internal and external repository integrations on daily basis
« VERA releases are taken off of stable ‘master’ branches on casl-dev git repos. I
« Very low maintenance cost of the infrastructure 4 I

Dependences Between Selected CASL VERA Repositories (2016)

Trilinos

(SNL)

’_T

TeuchosWrappersExt
(Multi Inst.)

T_l

VERAInExt
(Multi Inst.)

MAMBA 1
(LANL)

DatraTransferKit
(ORNL)

dhu——

T

A

COBRA-TF
(PennState)

MPACT

(UMich) [T—_ |

A

Primary/originating institution shown in Blue

Most codes being contributed by multiple institutions as well

All direct dependencies not shown

Local VERA git clones of all these repos kept compatible

MOOSEExt
SCALE (ORNL) MOOSE /
Bison (INL)
Exnihilo
(ORNL)
PSSDriversExt
(Multi Inst.)
DakotaExt
j VUQDemos
Dakota A (SNL)
(SNL)

Lavers of Build Tools and Build Systems [Eml

Package dependency handling and build/install/test orchestration

 Listing of different packages (each with their own meta-build system tool) and dependencies and version information.

» Acquires (and patches) source code for each package for the correct version, consistent configure, builds, and installs
« Examples (popular) tools/approaches: Spack, CMake External Project, SNL CApp, home grown scripts
* Arguably the most popular approach: Home-grown scripts

Meta-build system / Build file generator

» Uses higher-level description of the build targets in platform independent way

* Rules for each compiler and platform to generate detailed compiler and linker command-line options

« Automatically computes dependencies specification in generated Makefiles, Ninja files, or other tools

« Example (popular) tools/approaches: CMake, GNU Autotools, home-grown Makefiles (with thing configure scripts)
* Arguably the most popular approach: CMake

Build driver with low-level dependencies

» Given dependencies between different input and output files, runs low -level compile commands

« Only builds output targets that are out of date given the time stamps of their upstream dependencies (files).
« Example (popular) tools: (GNU) Makefiles, Google Ninja

» Arguably the most popular approach: GNU Makefiles

Raw compile and link commands

$ g++ -I<dirl> -I<dir2> .. -isystem <dirn> .. -fopenmp -03 -DNDEBUG -fPIC -std=c++14 -MD -MT .. -0
<object file>.o -c <source file>.cpp
$ gt++ .. <objectl>.o <object2>.0 .. -Wl,-rpath,<dirl>:<dir2> .. -L<dir3> .. -1<1libl> -1<1ib2> .. -0 <exec>

Why CMake?

Open-source tools maintained and used by a large community and supported by a profession software
development company (Kitware).

o

CMake:

Simplified build system, easier maintenance
Improved mechanism for extending capabilities
(CMake language)

Support for all major C, C++, and Fortran
compilers.

Automatic full dependency tracking (headers,
src, mod, obj, libs, exec)

Good Fortran support (parallel builds with
modules with src => mod => object tracking,
C/Fortran interoperability, etc.)

Shared libraries on all platforms and compilers
(support for RPATH)

Faster configure times (e.g. > 10x faster than
autotools)

Generates different backend builds: Makefiles,
Google Ninja, Visual Studio, Eclipse, XCode, ...
Portable support for cross-compiling

CTest:

« Parallel running and scheduling of tests and test time-outs,
resource (GPU) allocation

* Memory testing (Valgrind)

* Line coverage testing (GCC GCOV)

« Better integration between test system and build system

CDash:

« Web server for display, query, and archive of build, test,
memory, and coverage results

+ Flexible query and filtering of build and test results

» REST API to extra data to develop various tools

Recent news:

* There has been significant growth in CMake adoption,
maturation and feature development in recent years.

« CMake is now most popular build system for C++ code

in the world
« Improved documentation: Book “Professional CMake”

https://www.jetbrains.com/lp/devecosystem-2019/cpp/
https://www.jetbrains.com/lp/devecosystem-2019/cpp/
https://crascit.com/professional-cmake/

Major obstacles to build, test, and integration of CSE Software

Package dependency
handling and
build/install/test
orchestration

e.g. Spack, homegrown scripts

Meta-build system / Build file
generator

e.g. CMake, GNU Autotools,
homegrown Makefiles

Build driver with low-level
dependencies
e.g.. Makefiles, Google Ninja

L]

Raw compile and link

commands
$ g++ .. —0 <object file>.o -c
<source file>.cpp

$ gt+ <objectl>.o .. -0 <exec>

Heterogeneity in the build file generators (CMake, Autotools,
home-grown tools that generate Makefiles, etc.)

Inconsistent and incompatible usages of CMake (mix of old and
modern CMake approaches with different packages)

Inability to tweak generation of low-level compile and link lines to
address difficult cases on some builds and platforms (i.e. CMake)

Compatible upgrades of dependent packages (i.e. "Dependency hell")

Lack of robust portable test suites to drive packages integration
processes (e.g. fragile randomly failing tests).

Difficulties debugging through all of the different layers down to low-
level compiler and linker command-lines (i.e. Spack => CMake =>
Makefiles/Nina => Raw compile and linke commands)

&

Suggested solutions to major obstacles to build, test, and integration

Package dependency
handling and
build/install/test
orchestration

e.g. Spack, homegrown scripts

Meta-build system / Build file
generator

e.g. CMake, GNU Autotools,
homegrown Makefiles

Build driver with low-level
dependencies
e.g.. Makefiles, Google Ninja

L]

Raw compile and link

commands

$ g++ .. -0 <object file>.o -c
<source file>.cpp

$ gt++ <objectl>.o .. -0 <exec>

Heterogeneity in the build file generators (CMake, Autotools, |

home-grown tools that generate Makefiles, etc.)

— Use CMake as the meta-build system for all packages!
Inconsistent and incompatible usages of CMake (mix of old and
modern CMake approaches with different packages)

— Develop and adopt minimal standards for the usage of CMake and

the interoperability of modern CMake-based packages.
Inability to tweak generation of low-level compile and link lines to
address difficult cases on some builds and platforms (i.e. CMake)

— Continue to develop CMake to allow finer-grained control when

needed of the include directory handling and other options.
Compatible upgrades of dependent packages (i.e. "Dependency hell")
— Adopt Semantic Versioning Standard (semver.org) and policies for
transitioning package ecosystems for breaks in compatibility.
Lack of robust portable test suites to drive packages integration
processes (e.g. fragile randomly failing tests).

= Invest in the development and maintenance of test suites!
Difficulties debugging through all of the different layers down to low-
level compiler and linker command-lines

— Standardize on usage of Spack and simplify/streamline usage

= But, support configuration and development with just CMake

https://semver.org/

Package/Repository Integration: What Not to Do

pull External Project Developers Directly
xterna }
Q push Repo1 Pulling from the External Repos
* PkgA PkgB
External oull
Repo1 Devs
p”m External
pus
_ Repo2 oull
PkgC PkgD

External
Repo2 Devs

. . Project R
Why is this so bad? roject Repos
Project

» Lack of test coverage in the external repo’s Devs
native test suite to cover project’s needs.

Project Native E
Repo3 I

« External repo developers not testing against
the project’s code and tests.

PkgE PkgF

« External repo may be broken w.r.t. to the
project for long periods of time.

» Project developers frequently pull code that
does not even configure or build.

» Broken code frequently interrupting the work
of project developers. 10

Dependences Between Selected CASL VERA Repositories (2016)

Trilinos

(SNL)

’_T

TeuchosWrappersExt
(Multi Inst.)

T_l

VERAInExt
(Multi Inst.)

MAMBA 1
(LANL)

DatraTransferKit
(ORNL)

dhu——

T

A

COBRA-TF
(PennState)

MPACT

(UMich) [T—_ |

A

Primary/originating institution shown in Blue

Most codes being contributed by multiple institutions as well

All direct dependencies not shown

Local VERA git clones of all these repos kept compatible

MOOSEExt
SCALE (ORNL) MOOSE /
Bison (INL)
Exnihilo
(ORNL)
PSSDriversExt
(Multi Inst.)
DakotaExt
j VUQDemos
Dakota A (SNL)
(SNL)

11

Integration of Packages/Repositories into Project (CASL VERA)

and/or and/or E E
pul External push push | Project Copy |
push Repo1 - \:\ Repo1 :

* PkgA AgE Repof i PkgA PkgB i

Repo1 Devs Integrator : H !

pull pull pull : E

push External and/or andlor | Project Copy |

— Repo?2 push push | Repo2 .

\ ; :

PkgC || PkgD ! PkgC || PkgD || !

Repo2 Devs | |

Repo2 | * :

, , , Integrator : :
Project must contain consistent clones of all ! _ . |
the repos in the master branches of each. pull 4 ProJS;E)('\)'gt'Ve :
and/or ! |

Processes enforce that code pulled from the y |
master branch of the project’s interval repo’s Cla | PkgE || Pkef |

is working code.

Core developers for Repo1 and Repo2 may

be in different organizations/regions.

Integrations only performed if the test

suite passes!

pull pull

Project
Releaser

o
!

Managing Compatible Repos and Repo Versions

pull oul 1 Project Internal Repos i
pull External and/or and/or E :
Q push Repo1 push Q push ! Project Copy :
T Repo :
A PkeA || PkgB A : g |
Repo1 Devs Repo i PkgA PkgB :
Integrator ! A |
PU'L External p(‘;/” oull ! !
pus R 2 and/or d/ : !
T P2 — Push ush | Project Copy !
PkgC PkgD —_— | Repo2 i
Repo2 Devs : !
| PkgC PkgD |
Repo2 ! !
Issues that need to be addressed: Integrator ! £ :
» Flexibility for development inside and
outsidg of particular project. | pull 1 Project Native
« Managing changes between different repos andlor ! Repo3 :
versions and projects. _bush |
* Full tracking of changes and updates. PkgE PkgF || -
* Reproducibility of prior versions. Project Devs
* Repos may be missing with optional package oo '
dependencies.
* Making non-backward compatible changes pull
across many repos.
* How to manage compatible repos versions? Project

Releaser 1 3

Build, Test, and Integration: Final Recommendations [Eml

Package dependency
handling and
build/install/test
orchestration

e.g. Spack, homegrown scripts

Meta-build system / Build file
generator

e.g. CMake, GNU Autotools,
homegrown Makefiles

Build driver with low-level
dependencies
e.g.. Makefiles, Google Ninja

L]

Raw compile and link

commands

$ g++ .. -0 <object file>.o -c
<source file>.cpp

$ gt++ <objectl>.o .. -0 <exec>

Standardize on the usage of CMake for generating build files (i.e.
Makefiles or Ninja files, it does not matter which)

Extend/refine/improve CMake and the usage of CMake to handle all
portability aspects in generating low-level compile and link options

Develop and refine minimal standards for usage of CMake to
improve package portability and package interoperability.

Train package development teams on modern CMake and accepted
minimal standards for usage of CMake.

Fund early CMake porting work and interactions with venders to
new HPC platforms along with early test packages |

Quickly push out binaries for new CMake releases to all HPC and
support platforms as soon as they are released.

« Example: We need CMake 3.23 to address backward compatibility
for transition of TriBITS and Trilinos to modern CMake.

Keep higher-level package build/orchestration software out of the
low-level details of architectures, compiler options etc. (l.e. Let
CMake handle all low-level compiler and linker details).

« Example: Avoid drilling low-level compiler options through
compiler wrappers to underlying CMake builds. 14

o

Questions and Comments? |
|
I
I
|

15

