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3 ‘ 304L Stainless Steel

Most commonly selected austenitic stainless steel

Concern with laser welding - solidification cracking
-Tight restriction for impurity elements

Typical 304L Microstructure

-Highly controlled (Cr/Ni),,
-Secondary remelting (vacuum arc remelting, VAR)
Modified Suutala Weldability Diagram
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|
» | Borides identified in microstructure; m
raises liquation cracking concern

Co-located
borides
% @
S-ferrite |
stringers
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10"“ A0 = I
— |_| EMT = 20,00 kv WO= 4.5%mm Signal &= BSD Width = 2000 pm

Cr-rich borides observed along 6-ferrite stringers : - -
for boron Concentrations as IOW as 10_20 Wt ppm! Chen, W., et al. Met Mat Trans: A, Volume 32A, April 2001, 931-939. I



s | Liguation cracking identified in
heat-treated B-containing 304L

Laser welds on 304L with ~20 wt.ppm B

304L part (not brazed) Brazed 304L part



As-received microstructure - not

s 1 Liquation cracking identified in crack susceptible
heat-treated B-containing 304L | = colocated -
borides
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304L part (not brazed) Brazed 304L part

Fundamental kinetics of microstructural evolution as a
function of heat treatment not understood




As-received microstructure - not

7 I Liguation cracking identified in crack susceptible
heat-treated B-containing 304L | . Co-located -
borides
R AN
Laser welds on 304L with ~20 wt.ppm B @ |
_S-ferrite

Develop an overall understanding of the phase transformation
kinetics in B-containing 304L stainless steel to enable predictions
of crack susceptible microstructures produced during complex,

application-specific heat treatments

304L part (not brazed) Brazed 304L part

Fundamental kinetics of microstructural evolution as a
function of heat treatment not understood
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g | Problem: Previous weldability trials
were conducted with furnace heat treatments
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Furnace profiles were selected to I

replicate part-specific heat treatments I



o | Solution: Utilize Gleeble for Isothermal Heat Treatments

Rapid heating and cooling rates I : @
to restrict phase transformations e Noncoract | |
to a single temperature

Temperatures: 1000°C, 1100°C, 1200°C, 1300°C

Hold Times: 1 min, 8 min, 32 min, 64 min
Utilized 304L composition with ~20 wt ppm B
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o I ldentification of borides on
y/y grain boundaries is challenging

T=2000K/ WD=63mm SignalA=BSD Widh=15.00um

Other characterization techniques present similar
challenges (e.g. WDS, TEM, etc.)



T ‘ ToF-SIMS enables boron location identification

Overlaid B Map and SIMS

ToF-SIMS Boron Map Secondary Electron (SE) Image
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» | Boride dissolution occurs between 1000°C and 1100°C

'As-Received
o stringers
AV ;
i
i




3 | Boride dissolution

| Asl—Relceivled |

o stringers

occurs between 1000°C and 1100°C
1000°C 32 min
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1000°C 32 min o




4+ | Boride dissolution

| Asl—Relceivled |

o stringers

occurs between 1000°C and 1100°C
1000°C32min___1100°C 1 min

Little (if any) Some boron
observable migration toy
changes grain
between as- boundaries;

some remains
on &
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1000°C 32 min  »4




15 ‘ Boron diffusion to y/y grain boundaries is rapid
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Borides re-precipitate on 6/y boundaries _________
but not on y/y boundaries srias T

1100°C 32 min LS Sk e C e e
Recall: ability to see borides in SEM L e =

20 [

Elemental boron or borides below SEM
resolution limit?

Borides outline & o
{:




17 ‘ Developed test method to correlate
phase transformation kinetics to crack-susceptibility
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60 weld cross-sections surveyed per Gleeble condition

Step 3: Section welds in transverse,




18 ‘ Furnace profile condition is crack-susceptible

Unambiguous crack
determination in
as-polished condition
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19

Crack-susceptible microstructure

IS related to heating/cooling kinetics

100 ym
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Either borides aren't
present (elemental boron)
or are below resolution
. |imit of SEM (and are small
s | enough to not present a
—— cracking risk)

Experiments are in progress to elucidate

cooling rate effects on crack-susceptibility

 C(ritical cooling rate must be between 100°C/s
and 0.5 C/s (furnace profile cooling rate)



20 | Quantification of 0-ferrite reveals stability of 0

Selective ferrite etchant; 10% NaOH

200 im ©

~4.5 mm? were surveyed per sample
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All heat treated conditions have equal to or
more ferrite than starting condition




| Increase in amount of O0-ferrite associated with
stringer growth and new 0 formation
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2> | Summary to date & continuing work

* Boride solvus temperature is between 1000°C and 1100°C

« Additional experiments in progress at 25°C incremements to narrow in
on solvus temperature

« Boron migration to y grain boundaries is rapid (1 min at 1100°C is
sufficient)

« Heat treatments with rapid heating/cooling rates are not crack-
susceptible despite evidence of boron diffusion to grain boundaries

« Cooling rate is significant for generating crack-susceptible
microstructures

« Cooling rate experiments in progress: 10, 1, 0.5, 0.1 °C/s to determine
critical cooling rate

- &-ferrite growth occurs at temperatures above boride solvus (link
between ferrite and borides?)

«  These results begin to form the kinetic framework which will enable
predictions of the crack susceptibility of B-containing 304L stainless
when subjected to complex, part-specific heat treatments

- Additional work in progress: f s
* In-situ characterization
*  Effect of Cr/Nig, on B kinetics I
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»» | Thermo-Calc phase fraction predictions

for 20 wt ppm B 304L composition

Sample completely
liquid above ~1450°C

Austenite Liquid
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