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Phase-change materials for rewriteable data storage, M. Wuttig & N. Yamada, Nature Materials, 6, 824-832 (2007)

Phase-Change Materials for Data Storage

Store information in physical structure
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Advantages over flash memory

Increased switching speeds (Flash ~100us and PCM ~ns)
Higher storage stability
Size reduction (nano scale devices)

History of first PCMs and their uses

1980 Frst product (PCH: 500 GH)

1994 Powerful phase-change disk (PD:650MB)
1998 DVD-RAM ver.1 (2.6 GE)

2000 DVD-RAM ver.2 (4.7 GB)

2004 Single layer Blu-ray disk (BD:23.3GB)

);- A\

/ 1997 CO-RW (650 MB)

Ge(ln,Ag,Sn)

GeTe 1999 DVD-RW (4.7 GB)

197 2003 Single/dual layer Blu-ray disk (8D:23.3G8)
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GeSbTe (GST) Alloys

Most prevalent class of PCM due to its fast and reversible phase transitions between

amorphous and crystalline states.
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Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between
the crystal and amorphous states. S. Kohara, K. Kato, S. Kimura, H. Tanaka, Appl. Phys. Lett. 2006, 89, 201910

High thermal stability, low speed, metallic
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Limitation: Spontaneous crystallization at

~150 degrees Celsius (423 K)

Synthesis and screening of phase change chalcogenide thin film materials for

data storage. S. Guerin, B. Hayden, D. Hewak, C. Vian, ACS Comb. Sci. 2017,
19, 478-491.




GeSbTe (GST) Alloys

Most prevalent class of PCM due to its fast and reversible phase transitions between

amorphous and crystalline states.

Guo, P.; Sarangan, A.M.; Agha, I. A Review of Germanium-Antimony-Telluride
Phase Change Materials for Non-Volatile Memories and Optical Modulators. Appl.
Sci. 2019, 9, 530. https://doi.org/10.3390/app9030530
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Carbon Doping in GST Systems

Understanding Phase-Change Behaviors of Carbon-Doped Ge2Sb2Te5 for Phase-Change Memory
Application, X. Zhou et al, ACS Applied Materials & Interfaces (2014)

Adding carbon increases the stability of the amorphous phase
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Lowering the Reset Current and Power Consumption of Phase-Change
Memories with Carbon-Doped Ge2Sb2Te5, Q. Hubert et al, 2012 4th IEEE
International Memory Workshop, 2012, pp. 1-4, doi:
10.1109/IMW.2012.6213683.
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Current Work: Atomic Simulations

Investigate the structure and stability of amorphous and
crystalline Ge,Sb,Tes, (Ge,Sb,Tes),Ci_, (x:0.9 to 0.99)

MD simulations of each phase for 20ps
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Jovari, P. et al. ‘Wrong bonds’ in
sputtered amorphous Ge2Sb2Te5 . J.
Phys. Condens. Matter 19, 335212
(2007).
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Nature Mater 7, 399-405 (2008).
https://doi.org/10.1038/nmat2157



Explore phase stabilities via Free Energy

Investigate the structure and stability of amorphous and

GST 225 crystalline Ge,Sb,Tes, (Ge,Sb,Tes),Ci_, (x:0.9 to 0.99)
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Explore phase stabilities via Free Energy

Investigate the structure and stability of amorphous and

GST + 1%C crystalline Ge,Sb,Tes, (Ge,Sb,Tes),Ci_, (x:0.9 to 0.99)
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Crystallization via molecular dynamics

Free Energy [eV]
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Crystallization via molecular dynamics
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Evolution of
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Much larger difference in spectra for Ge and Te than for Sb




Crystallization via molecular dynamics

Evolution of Vibration DoS from 100ps — 140ps
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Local bonding environments of the Ge-Te network show the most
change during crystallization




Crystallization via molecular dynamics
Evolution of Vibration DoS from 140ps — 360ps
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Spectra for Ge and Te continue to evolve while Sb is steady




How does carbon change the amorphous phase?
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How does carbon change the amorphous phase?
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Final Remarks

Conclusions
* Adding carbon to GST decreases the free energy difference between the crystalline and amorphous
phases by shifting the contribution from the internal energy.
* During crystallization of undoped GST, most of the changes to local bonding environments are due to
the evolution of the Ge-Te network.
* Analysis of the doped and undoped amorphous phases suggests that increased carbon content leads to
* A decrease in overall octahedral bonding
* Anincrease in tetrahedral bonded Ge atoms
* Higher disorder
* Disruption of the Ge-Te network.

Future Work

e Vibrational analysis of amorphous carbon doped GST structures.

* Further analysis of the evolution of atomic structure during crystallization of undoped GST.

e Crystallization of carbon doped GST systems.

* Investigation of off-stoichiometric doped and undoped GST systems (i.e., Ge-rich and Ge-poor).
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