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Phase Change Memory: Atomistic precision for macroscale applications
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Wuttig and Yamada, Nat Mat, 
2009

Sun et al., npj, 2021



Stabilizing the amorphous phase
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Sun et al., npj, 2021

Cho et al., APL, 2011

Han et al., RSC Advances, 2021



What atomistic process can we model so far?
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Ab initio methods:
• Phase change

• Density of states
• Dopant stability
• Recrystallization

• Limited to constant volume

**limited to small system sizes

ML MD Potential:
Gaussian Approximation Potential –

DFT accuracy with scaling to ~7K 
atoms

NPT possible for phase change 

Mocanu et al., JPC B, 2018
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Developing machine learning potentials

High density neural network potentials 
(HDNNP)

- High variability due to immense 
hyperparameters

- Requires higher volume datasets
- High sensitivity to network 

initialization for training

HDNNP+Iteration:
• Enrich dataset with NNMD trajectories

• Explore edge cases

Limitations to overcome:
1. Feature selection

2. Architecture 
initialization



NNP Iterative Workflow
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Database From:
DFT+MD of [GST, GeTe], 
Eq. of State for Ge,Sb,Te

DFT-PBE-D2 
Single Point 

Calculation on 
MD Subset

Verification and 
Validation

Converged NN 
Potential

Feature Selection NNP Training

MD Simulation 
using NNP

Database From:
GST+X [C,N,O,Al,Cu,Sn…]

DFT+MD // NNP+MD 
trajectories
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DFT Simulations – GGA – PBE+D2
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Ab initio MD – NVT
Analyze and break down 
free energy contributions

Xtal:
• T=[400,600,800]K

• Gather trajectories for each 
temp

Tm = 900 K
Tx-tal = 423 K

Amorph:
• Melt at 2000K 

• Quench and repeat 
temps from Xtal

GST+C:
• Create cubic structure with 

desired composition
• Melt & quench [see work 

by Robert Appleton]

Run Params:
K-point grid: 1x1x1

Supercell: 144 atoms
KE cutoff: 300 eV

Hexagonal

Cubic (Rocksalt)

Guo et al., Appl. Sci. 2019,

Three primary phases: Amorphous/Cubic 
Rocksalt (FCC)/Hexagonal



Using neural network potentials
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Khorshidi et al., CPC, 2016
Behler, JCP 2011
Gastegger et al., JCP, 2018



Using neural network potentials
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Symmetry 

Function Atom NN
Atom 

Energy

Atom 

[x,y,z]



Hyperparameters of features
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A simple gaussian function with a cutoff radius Rc , a 
width tuner η, and a shift parameter Rs

A complex gaussian function with a cutoff radius Rc , a 
width tuner η, and a shift parameter Rs, now with a cosine 

function flipped by λ±1, and band width tuned by ζ

How many features are we optimizing?
3 elements
Grad_________________
Rs = 3x
η = 6x

Gang_________________
λ = 2x
ζ = 1x
Rs = 3x
η = 6x

54 possible features / 
element given initial 
grid



Initial Selection Database:
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Hex – GST – 225
• @ [300,400,600,800] K
Cub – GST – 225
• @ [300,400,600,800] K
Amorph – GST – 225
• @ [300,400,600,800] K
Liq - GST – 225
• @ [1100K, 2000] K
Liq & Crystalline GeTe
• @ varied temperatures

• Selected 1% of full DFT+MD database 
for initial training and calibration

• 90/10 train/test split for initial 
verification

• 2 Hidden Layers: [50/50]



Limitation 1
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Limitations to overcome:
1. Feature selection

2. Architecture 
initialization

Which symmetry functions 
best describe my 

environment?

What is my trade off for 
description vs. computational 

weight?

3 elements
Grad_________________
Rs = 20x constant η 
η = 18x constant Rs

Gang_________________
λ = 2x
ζ = 1x
Rs = 3x constant η
η = 3x constant Rs



Solution 1: CUR Decomposition
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Elements FeaturesFeature Matrix

෩𝑀 𝐶

𝑅

𝑈= x x

Scoring Matrix

Scaling functions from symmetry functions 
used as weighting parameters in U

Highest expressivity, lowest overlap, most 
unique fingerprints retained

Retain the original matrix



Solution 1: CUR Decomposition
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Sampling 1000 networks
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Limitations to overcome:
1. Feature selection

2. Architecture 
initializationIf a network’s weights are 

initialized differently – will I 
arrive at the same ‘Global’ 

Minimum?



Characterizing the probability distribution
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Test with Cumulative 
Distribution Function:

Fx(x) = P(X≤x)

Distribution Type Hypothesis:
• Exponential
• Gamma
• Gaussian
• Poisson

Gaussian
Gamma



The Rule of 5
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If I pick 5 different initializers, the probability of me 
selecting a value below the mean is XX

[the math needs to be done before the conference]



Generational Training Roadmap
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DFT+MD Database Gen 1.1 Gen1.2 Gen1.3 Gen1.4 Gen1.5 Gen1.6 Gen1.7 Gen1.8 Gen1.9 Gen1.10 Gen1.11 Gen1.12 Gen1.13 Gen1.14 Gen1.15

Ge/Sb/Te

GeTe

h-GST

c-GST

a-GST[6.2] 300K 2000K
a-GST[6.11]

a-GST[5.88]

l-GST

NNP+MD NVT Database

h-GST

c-GST

a-GST[6.2]

a-GST[6.11]

a-GST[5.88]

l-GST

NNP+MD NPT Database

h-GST

c-GST

a-GST[6.2]

a-GST[6.11]

a-GST[5.88]

l-GST

• For each NNP+MD run create isotherm
• 144 atom configurations mapped from DFT 

structures
• 1 ns simulation time || sample 10 trajectories



Generational Training Roadmap
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Family 1: Grid of features, use one network per 
iteration

Family 2: CUR selected features, use one network per 
iteration

Family 3: CUR selected features, use five networks per 
iteration 



Baseline Training
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Family 1

Family 2

Family 3



How do we compare?
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Family 3

NNP GeSbTe
Force RMSE: 0.32 eV/Å

Energy RMSE: 10.87 meV/atom



Training Gen1.1 – Molecular Dynamics
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Family 3

Stabilizing the Cubic Phase [X]

Amorphous to Xtal at 600K [X]



Begin the loop!
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Training Gen1.4
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Amorphous to Xtal at 600K [X]

Stabilizing the Cubic Phase [√]



Switching to NPT and Evaluating Stability
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Database Composition
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Comparing Three Families

27Family 1
Family 2

Family 3



Comparing Three Families
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• CUR selected features 
[Family 2/3] 
outperform grid of 
features [Family 1]

• [Family 3] allows for 
well controlled 
dynamics and 
database enrichment



Validation with DFT
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Crystallization via molecular dynamics

DFT+MD Simulation @ 600K || 
NVT ensemble



2 Flavors of Validation
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1.) How well can my trained weights 
reproduce an DFT+MD simulation of 

amorphous recrystallization with NNP+MD?
2.) How well can my weights reproduce 

energies of the DFT+MD trajectory



Generation Validation
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Three Families – Three Phases
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Hexagonal Cubic Amorphous

1

2

3

Ge Sb Te

√

√

√

√

√

√

X

√

√



Current State:
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Limitations:
• Large scale recrystallization needs a 

heterogeneous seed
• Liquid temperatures above 1200K become 

unstable in NPT

Successes:
• Stability of all three phases in NVT/NPT
• Recrystallization of amorphous into cubic 

phase shown
• Good agreement with DFT structural 

representations for xtal/amorphous

Soon to come:
GST+C iterative training

~7000 atoms – recrystallizing anneal 600K – 2 ns run
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