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Phase Change Memory: Atomistic precision for macroscale applications
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Stabilizing the amorphous phase

Han et al., RSC Advances, 2021
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TABLE I. The coordination numbers, bond lengths, the first peak position a-CGSTm a-OGSTmm
of ADF around Ge atoms in amorphous GST structures. Ge(l) atoms are 35} 40 ABAB ring
bonded to dopants, while Ge(1l) atoms are not. » 30¢t 230
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d-Lao 2.0 Z. z i
n-fold rings
aCGST 400 367 267 274 106 03 Cho et al.,, APL, 2011
a-NGST  4.00 4.00 2.73 2.80 102 95 FIG. 2. (Color online) Ring statistics for amorphous GST structures counted
a-OGST 3.74 3.90 2.84 2.81 98 93 per supercell. The inset figure shows the numbers of ABAB-type squared

rings.




What atomistic process can we model so far?

Ab initio methods:
« Phase change

« Density of states

« Dopant stability

« Recrystallization

 Limited to constant volume

**|imited to small system sizes

np) ‘ Computational Materials

(a)

ARTICLE OPEN

Ab initio molecular dynamics and mater @ Ge
J Sb

embedded phase-change memory

@ Te
Liang Sun'®, Yu-Xing Zhou®3”8, Xu-Dong Wang??, Yu-Han Chen??, Volker L. Deringer’

Www.nature.com/npjcompumats

Ge,Sb,Te,

ML MD Potential:
Gaussian Approximation Potential —
DFT accuracy with scaling to ~7K
atoms
NPT possible for phase change

Mocanu et al., JPC B, 2018



Developing machine learning potentials

DFT-PBE-D2 from:
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NNP lIterative Workflow

// MD Simulation \\\
!' using NNP
Database From: i
DFT+MD of [GST, GeTe], |
Eq. of State for Ge,Sb,Te !

Feature Selection NNP Training DFT-PBE-D2
Single Point

Calculation on
MD Subset

DFT+MD // NNP+MD J

trajectories

Database From: Verification and
GST+X [C,N,0O,Al,Cu,Sn...] Validation
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DFT Simulations —- GGA — PBE+D2 [ttty

Hexagonal

Three primary phases: Amérphous /Cubic
Rocksalt (FCC)/Hexagonal
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Guo et al., Appl. Sci. 2019,

150 200 250
Annealed temperature(°C)

300 350

Robert Appleton, Zachary McClure,
Alejandro Strachan, David Adams

I =900K Ab initio MD — NVT
Tt = 423 K Analyze and break down
free energy contributions
Xtal: Amorph:
« T=[400,600,800]K e Meltat 2000K
Gather trajectories for each + Quench and repeat
temp temps from Xtal
GST+C: Run Params:
Create cubic structure with K-point grid: 1xix1
desired composition Supercell: 144 atoms

* Melt & quench [see work KE cutoff: 300 eV
by Robert Appleton]
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Khorshidi et al., CPC, 2016
Behler, JCP 2011
Gastegger et al., JCP, 2018

Using neural network potentials
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Using neural network potentials
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Hyvperparameters of features

A simple gaussian function with a cutoff radius R, a Natom € Re
. : w,rad . —n(Rij—Rs)?
width tuner 1, and a shift parameter R G! _ E 9(Z;)e n(Rij—Rs) fo(Ri;)
A complex gaussian function with a cutoff radius R_, a J#i

width tuner 1, and a shift parameter R_, now with a cosine
function flipped by A+1, and band width tuned by ¢

(ﬂu ,ang 21 ¢ Z h Z}g (]_ + \ cos 9 ){;H—T;[(R@j—RH)Q_HRI-_;;—R,-;}Z—I—(Rjk—RE}]

J.k#i ...
j<k How many features are we optimizing?

, 3 elements
) j(:(Rij)fr:(R-ik)fr:(Rj.{:) Grad
R,=3x
n = 6x

Gang
A=2Xx

¢=1x 54 possible features /
R, = 3x element given initial
1N = 6x grid

05 10 15 20 25 30
;. (rad)
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Atomic Simulations of GST+C
Phase Change Materials

Initial Selection Database:

Robert Appleton, Zachary McClure,
] Alejandro Strachan, David Adams

Hex — GST — 225

* @ [300,400,600,800] K
Cub — GST — 225

* @ [300,400,600,800] K
Amorph — GST — 225

* @ [300,400,600,800] K
Liq - GST — 225

« @ [1100K, 2000] K

Liq & Crystalline GeTe

* @ varied temperatures

 Selected 1% of full DFT+MD database
for initial training and calibration

Eq. of State Hex. Ge> Cub. Ge: Amorph. Ge Liq. Ge;Sb

GeTe

[Ge,Sh,Te] MD+DFT Shg TE5 Sbg Te5 2 Sbg Te5 2 Te5
. . e S.P. DFT MD:DFT  MD«DFT  MD:DFT  MD+DFT
* 90/10 train/test split for initial — — — _

verification

« 2 Hidden Layers: [50/50] ’




Test error (meV/atom)

<1110
20~
@ © Jmax = 3
¢ o’/ o
107 | ’ ® hidden |a'y55 [16, 16]
1 (o3 A 0 O
o °® .- W
54 O GAP _ ./ o
¢ wmTP . ®
@ NNP /ﬁ\_p_. .
O SNAP / L f-
@ qSN AP 20 polynomial powers
2 2000 kernels
10'5 10-5 10-4 10_3 10_2

Computational cost s/(MD step - atom)

Which symmetry functions
best describe my
environment?

What is my trade off for
description vs. computational
weight?

Baseline Radial Grid

R [A]

Baseline Angular Grid
90°

270°

Limitations to overcome:
1. Feature selection
2. Architecture

initialization

3 elements

Grad

R, = 20x constant n
n = 18x constant R

Gang
A= 2X
(=1x

R, = 3x constant n
N = 3x constant R
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Solution 1: CUR Decomposition M~ CUR

Feature Matrix Elements Scoring Matrix Features

Scaling functions from symmetry functions
used as weighting parameters in U

Highest expressivity, lowest overlap, most
unique fingerprints retained

Retain the original matrix

_ E U(J)

Automatic selection of atomic fingerprints
and reference configurations for machine-
learning potentials

Cite as: J. Chem. Phys. 148, 241730 (2018); https://doi.org/10.1063/1.5024611
Submitted: 02 February 2018 « Accepted: 10 April 2018 +» Published Online: 30 April 2018

Giulio Imbalzano, ' Andrea Anelli, ' Daniele Giofré, et al.
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Solution 1: CUR Decomposition

270°



If a network’s weights are
initialized differently — will I
arrive at the same ‘Global’
Minimum?

£ S
- &

Limitations to overcome:
1. Feature selection
2. Architecture

== initialization




Characterizing the probability distribution

50

Distribution Type Hypothesis: o
« Exponential , : :
« Gamma Test .w1t1.1 Cumulat.lve
« Gaussian Distribution Function:

« Poisson F(x) = P(X=x)

1.0 1.0 1.0
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The Rule of 5

251
20 1
15 1
10 1
5.
| TR B 0. | | . | | |
4 6 8 10 12 14 10.0 12.5 15.0 17.5 20.0 22.5
Energy RMSE [kcal/mol] Force RMSE [kcal/mol/A]

If I pick 5 different initializers, the probability of me
selecting a value below the mean is XX

[the math needs to be done before the conference]
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MD Simulation
using NNP

Generational Training Roadmap

L3O e

Database From: o ': PP
DFT+MD of [GST, GeTe], LT
. Eq. of State for Ge,Sh,Te
e For each NNP+MD run create isotherm

* 144 atom Configurations mapped from DFT Feature Selection NNP Training I?SféllzaBP}?)-ilr?f

structures - o . . Calculation on

. . . . . MD Subset
* 1nssimulation time || sample 10 trajectories
DFT+MD // NNP+MD

y trajectories
DFT+MD Database Gen 1.1 Genl.2 Genl.3 Genl .4 Genl .5 Genl.6 Genl.7 Genl.8 Genl.9 Genl.10 Genl.11 Genl.12 Genl.13 Genl.14 Genl.15
Ge/Sb/Te
GeTe
h-GST
¢-GST

a-GST[6.2] 300K 2000K
a-GST[6.11]
a-GSTJ[5.88]

1-GST

18



Generational Training Roadmar

MD Simulation
using NNP

iteration ! -

Family 1: Grid of features, use one network per N . 5i....... I

Database From:
DFT+MD of [GST, GeTe],
Eq. of State for Ge,Sb,Te

Family 2: CUR selected features, use one network per T — T s |
iteration 6.

MD Subset

DFT+MD // NNP+MD
trajectories

Database From: Verification and

GST+X|[C,N,0,Al,Cu,Sn...] Validation

Family 3: CUR selected features, use five networks per

Converged NN

iteration Potential

Baseline Radial Grid
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Baseline Traininc
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How do we compare®?
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Training Gen1.1 — Molecular Dynamics

Genl.1.50 NN_4

1000

7501

5004

2504

Fun [kcal/mol/A]

—2507

=500

=750
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Stabilizing the Cubic Phase [X]

Bond Angle Distribution Radial Distribution Function

a(r)

150 175 2 3 4 5 6 7 &8 9 10
r[A]

Amorphous to Xtal at 600K [X]

100 125
c]

Bond Angle Distribution Radial Distribution Function

glr)

Ref.
10 ps
20 ps
30 ps
40 ps
50 ps
60 ps
70 ps
80 ps
90 ps
100 ps

10 ps
20 ps
30 ps
40 ps
50 ps
60 ps
70 ps
80 ps
90 ps
100 ps
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Beqgin the loop!

MD Simulation
using NNP

Database From:
DFT+MD of [GST, GeTe],
Eq. of State for Ge,Sb,Te

Feature Selection Dl.*“T-PBE-.D2
Single Point

Calculation on
MD Subset

DFT+MD // NNP+MD J

trajectories

T —————— -

Database From: Verification and
GST+X [C,N,O,Al,Cu,Sn...] Validation

Converged NN
Potential

23



Training Gen1.4

Stabilizing the Cubic Phase [V]

Bond Angle Distribution Radial Distribution Function
Gen1.4.50 Genl1.4.50 || RMSE = 36.71
1000 016 100
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y 100|
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=75] 0.25 — 100 ps
. . Trairjing Data 20
=100 = Testing Data
-100 -75 -50 -25 O 25 50 75 0005 -2 -1 0 1 2 3
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0.
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Switching

to NPT and Evaluating Stabilit

NNMD from Genl.5

6.6 u " ® DFT Hex.
I -I. : ‘ - Exn. Hex.
I NNMD from Gen1.10
I 6.6; » "
X R En— | -
I I -
I S | .
| 64F-——-F-——9F--————- ——— "
.-'n_' 6.2 I L]
£ I .
g | ———— - :
2 I 5
= l,.',.,—' 6.2 .
= 6.0 | £ I .
z Y | .
g :E I -
|2 6.0 I .
5.8 e I .
lo .
1 e | :
I 5.8 I .
5.6 i | :
0 l :
| 1 [ =
200 300 400 5.6 I .
| 5
200 300 400 500 600 700 800 900 1000

Temperature [K]

DFT Hex.
Exp. HexX.
NNMD Hex.
DFT R.S.

Exp. R.S.
NNMD R.S.
DFT Amorph.
Exp. Amorph.
NNMD Amorph.
DFT Lig.

Tx

Tm



Hex. Cub. Lig. Ge Hex. Cub.
Eq. of State Hex.Ge2Sb Cub.Ge)Sb Amorph.Ge  Lig. Ge:Sb Ge)Sb  GesSb Amorph. Amorph.

[ | ]
[Ge,SbTe] 0 Tt sTes > Tes 2SbyTes 2Tes  OT To;  GexSbrTe 2?,:; Ge;.é’: 59221:: Ge:Sba Te
‘ SP.DFT MD+DFT  MD+DFT MDsDFT  MDsDFT 351 3053 st A A 5 NPT
Gen1.1 150 823 100 100

114 40 0 [i] 0 ] 0 0 [i]
Genl.2 150 B28 100 100 114 40 44 44 143 11 0 0 ]
Genld 150 828 100 100 114 40 88 88 286 22 0 0 [i]
33 0 0 0
Training Database Summary “ 00 0
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Comparing Three Families
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Validation with DFT A s Chnee Mot

DFT+MD Simulation @ 600K ||
NVT ensemble

I
(e)]
N
&

I
)]
N
o

Free Energy [eV]

|
[o)]
w
N

Robert Appleton, Zachary McClure,
Alejandro Strachan, David Adams

—634 41—

I
50

T
100

Crystallization via molecular dynamics

29



2 Flavors of Validation

1.) How well can my trained weights
reproduce an DFT+MD simulation of
amorphous recrystallization with NNP+MD?

Family 1 || Genl.1 || Time Comparison

2.) How well can my weights reproduce
energies of the DFT+MD trajectory
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Generation Validation
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Current State:

~7000 atoms — recrystallizing anneal 600K — 2 ns run
Successes:

 Stability of all three phases in NVT/NPT
« Recrystallization of amorphous into cubic
phase shown
* Good agreement with DFT structural
representations for xtal/amorphous

Limitations:
« Large scale recrystallization needs a
heterogeneous seed

« Liquid temperatures above 1200K become
unstable in NPT

Soon to come:
GST+C iterative training 33
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