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Introduction
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 Post-exascale era in computing will look much different from today’s landscape

 Slowing of Moore’s law is driving the computing community toward more 
specialized forms of compute to achieve power, performance, & reliability

◦ Explosion of accelerator designs from both industry and academia

 The number of possibilities for system and node design in this new paradigm 
will necessitate new simulation models and capabilities



Age of the Accelerator?

3[Nowatzki, 2016]

Processor Energy Breakdown

8 Cores L1/Reg/TLB L2 L3
[Horowitz, 2014]

 Accelerators will likely provide the best power-
performance for many domains in the future

 But how much specialization is needed?

 What are the tradeoffs?



Accelerator Domains
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 High-Level Synthesis
◦ Designed for a very specific task (C/C++  RTL)
◦ Examples: FPGA, CGRA

 Application-Specific Architectures
◦ Co-designed hardware for single 

application/domain
◦ Examples: MAERI, SIGMA, TPU, ASV

 General Purpose
◦ Suitable for many applications/domains
◦ Examples: GPU, DSP
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Which Accelerator?
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 Open question with many potential research areas

 Many research projects are exploring spatial accelerators
◦ Might be easier to program

◦ Common APIs and compiler infrastructure
◦ Energy efficient

◦ Similar to CGRAs
◦ Performant? Probably better than SIMT for some application domains

◦ Particle transport
◦ CNN/DNN (MatVec, MatMat, SpMM)



Spatial/Dataflow Accelerators
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 Compilers build internal representations of applications that represent the 
behavior as a series of graphs -- abstracting the control and data flow

 Traditional processors execute instruction sequentially, destroying an 
application’s inherent instruction-level parallelism (ILP)

◦ Superscalar OoO processors go to great lengths to reconstruct the ILP
◦ Multiple queues and complex logic allow instructions to issue when operands are 

available rather than in program order
◦ Results are placed in additional queues and made visible to the system in program 

order even if they are completed out-of-order

 Dataflow architectures are able to execute these graphs directly, without the 
need to flatten the graph and artificially recover the parallelism



Dataflow Graph -- multiply_test()
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LLVM IR
; Function Attrs: norecurse nounwind uwtable
define void @multiply_test(i32* %a, i32* %b, i32* %c) local_unnamed_addr #0 {
entry:
 %0 = load i32, i32* %a, align 4, !tbaa !2
 %mul = mul nsw i32 %0, 3 
 %1 = load i32, i32* %b, align 4, !tbaa !2
 %mul1 = shl i32 %1, 1
  %add = add nsw i32 %mul1, %mul
  store i32 %add, i32* %c, align 4, !tbaa !2
  ret void
}

C++ Function
void  multiply_test(int* a, int *b, int* const c) {
   int f = 3 * (*a);
   int g = 2 * (*b);
   *c = f + g;
}



Dataflow Graph -- multiply_test()
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C++ Function
void  multiply_test(int* a, int *b, int* const c) {
   int f = 3 * (*a);
   int g = 2 * (*b);
   *c = f + g;
}



Dataflow Graph -- multiply_test()
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C++ Function
void  multiply_test(int* a, int *b, int* const c) {
   int f = 3 * (*a);
   int g = 2 * (*b);
   *c = f + g;
}



Simulating Dataflow Architectures
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 There are examples of each of the different types of accelerators in the 
literature

◦ Dedicated/Static
◦ Softbrain

◦ Dedicated/Dynamic
◦ Plasticine, SPU, MAERI

 Currently developing dataflow component for Structural Simulation Toolkit 
(SST) for dedicated/dynamic designs

◦ Flexible interface to add custom PEs
◦ Arbitrary connectivity
◦ Mappers are dynamically loaded allowing them to be swapped at runtime
◦ Leverages SST component interface to enable scalable simulations

◦ Shared/Static
◦ CGRA

◦ Shared/Dynamic
◦ TRIPS, SGMF



SST Dataflow Component
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 Multiple instances, allows for different configurations 
of each instance

◦ Arbitrary memory hierarchy
◦ Some limitations on node configurations
◦ Reconfigurable at runtime*

 PEs have a compute unit, input buffers, and output 
buffers

◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs



SST llyr Component
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 Layout constructed using a hardware description file
◦ Describes connectivity between PEs
◦ Describes allowable operations per-PE 

0 [pe_type=ANYMEM]
1 [pe_type=ANYMEM]
2 [pe_type=ANYMEM]
3 [pe_type=ANYMEM]
4 [pe_type=ANYARITH]
5 [pe_type=ANYARITH]
6 [pe_type=ANYARITH]
7 [pe_type=ANYARITH]
8 [pe_type=ANYARITH]
9 [pe_type=ANYARITH]
10 [pe_type=ANYARITH]
11 [pe_type=ANYARITH]
12 [pe_type=ANYMEM]
…

0 -- 1
0 -- 4
1 -- 0
1 -- 2
1 -- 5
2 -- 1
2 -- 3
2 -- 6
3 -- 2
3 -- 7
4 -- 1
4 -- 5
4 -- 8
…



LLVM and llyr Parsing
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 Work in progress…

 Offload targets are marked in the user application – currently under study
◦ __attribute__ ((offload (device, 0))) myFunction()
◦ #pragma secret offload directive device(0)

 These functions/loops will be compiled with the user code but the LLVM IR will 
be embedded with them in the final executable



Embedding Problem
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 Dataflow hardware consists of a set of PEs that may have fixed or 
programmable connectivity (MAERI, Softbrain, Plasticine, etc.)

 A user application consists of a set of operations that map to one or more PE 
types (add, sub, mul, etc.)

 Goal: Map user application operations onto set of hardware PEs

?????

Can be NP-complete 
(factorial complexity) 
[Conte, 2004]



Current Approach
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 Running standalone VF3 implementation from the University of Salerno 

 Have tested VF3 on multiple graphs (up to 512 nodes) 

 Current problem is that constraints can result in no valid mapping
◦ Need a way to bypass a node
◦ Will require some tweaking to be able to perform lookahead in the algorithm



Node Attributes Don’t Matter
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Node Attributes Don’t Matter
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13720 possible mappings



Node Attributes Matter (Kind’a Sort’a)
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32 possible mappings



SST llyr Component Sample Configuration 
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 Parameters
◦ clock: Operating frequency for entire device
◦ config: Input hardware layout
◦ xxx_lat: Number of cycles to complete the operation
◦ queue_depth: number of buffer entries
◦ ls_entries: number of L/S entries to process each cycle
◦ mapper: app_graph  hw_graph embedding

 Additional parameters for 
standalone/testing
◦ application: application in LLVM IR
◦ mem_init: memory initialization file



Modeling ASAs
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 The hardware description should allow users 
to emulate more constrained dataflow devices

◦ MAERI
◦ Programmable DNN accelerator

◦ SambaNova?
◦ Reconfigurable dataflow

◦ Others?
◦ ASA?
◦ Crossbar? [Kwon, 2019]

[SambaNova, 2021]



Summary
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 Advances in material science and fabrication technologies are opening the 
door to the integration of exotic computing devices with traditional 
architectures 

 Dataflow and application-specific accelerators are the most promising near-
term candidates under consideration 

 In simulation, these models can emulate a broad range of computational 
devices



Thank You’s…
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 Siva Rajamanickam, Jim Laros, and Kevin Pedretti
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Devices & Architectures

25

 Transistor density has continued to scale well despite decreasing clock 
frequency

◦ Vendors provide more computation on a single chip
◦ Scaling will probably end sometime before 2030

◦ 2D lithography approaching atomic scale

Operation Energy (nJ)
ADD 0.64

L1  REG 1.11
L2  REG 2.21
L3  REG 9.80

MEM  REG 63.64
Prefetch 65.08

[Kestor, 2014]



The Power Problem
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Computation does not represent 
the bulk of the energy!

Processor Energy Breakdown

8 Cores L1/Reg/TLB L2 L3

25pJ 6pJ 39pJ 0.1pJ 70pJ
Ins Cache Register Control Add

[Horowitz, 2014]
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  for( uint32_t i = 0; i < M; ++i ) 

       for( uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j ) 

          for( uint32_t k = 0; k < K; ++k ) 

                 result[i][k] = result[i][k] + values[j] * b[column[j]][k];

values[j]b[col[j]][k] b[col[j]][k]

col[j]

K
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  for( uint32_t i = 0; i < M; ++i ) 

       for( uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j ) 

          for( uint32_t k = 0; k < K; ++k ) 

                 result[i][k] = result[i][k] + values[j] * b[column[j]][k];



SST llyr Component
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 PEs have a compute unit, input buffers, and output buffers
◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs

 Current PE list
◦ LD, ST, LD_ST
◦ SLL, SLR, ROL, ROR
◦ ADD, SUB, MUL, DIV
◦ FPADD, FPSUB, FPMUL, FPDIV, FPMATMUL
◦ BUFFER
◦ ANY, ANYMEM, ANYLOGIC, ANYINT, ANYARITH, ANYFP



SST llyr Component
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 The hardware configuration controls the potential computation, but the 
application graph controls the actual computation

 LLVM IR will be extracted from the ELF executable and passed to the llyr 
parser

 Parser will construct a dataflow graph with control information (backward 
edges) from the LLVM IR

Parser

void  multiply_test(int* a, int *b, int* const c)
{
   int d = *a;
   int e = *b;

   int f = 3 * d;
   int g = 2 * e;

   *c = f + g;
}



LLVM IR to AppGraph
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LLVM IR

Application Graph


