Thislpaperldescribesfobijectiveftechnicallresultsfandianalysis JAnylsubjective views or opinions that might be expressed in SAND2022-2234C

helpaperfdojnotinecessarilyfrepresentfthejviews|ofltheJU.S JDepartment of Energy or the United States Government.

Sandia
National
Laboratories

Exceptional service in the national interest

Simulating Next-Gen Dataflow
Architectures for HPC

2022 SIAM Conference on Parallel Processing for Scientific Computing

Presented by Clay Hughes, Sandia National Laboratories

Clay Hughes, Gwendolyn Voskuilen, Arun Rodrigues,
and Simon Hammond, Sandia National Laboratories

SAND2022-
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

SandialNationalfLaboratoriesfislafmultimission laboratory managed and operated by National-Technology&-EngineeringrSolutions, of Sandia,, LLC +a,whollyiowned, i _
International,Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525." ™™ ation under contract DE-NA0003525.

/,

/

/" Introduction

Post-exascale era in computing will look much different from today’s landscape

Slowing of Moore's law is driving the computing community toward more
specialized forms of compute to achieve power, performance, & reliability
o Explosion of accelerator designs from both industry and academia

The number of possibilities for system and node design in this new paradigm
will necessitate new simulation models and capabilities

/ Age of the Accelerator?
/

~~ Accelerators will likely provide the best power-

performance for many domains in the future

But how much specialization is needed?

What are the tradeoffs?

Traditional
Multicore

(specialization
alternatives) /-

Domain-Specific Acceleration

Cache

Core
Core
Core

Core

Processor Energy Breakdown

<
Q

m8 Cores ®L1/Reg/TLB =2 =|3

N

Programmable Specialization

Neural
Approx.

Cache

Deep Neural,
Neural Approx

Cache RegExp Al
Graph
Traversal

Core
Core
Core

Stencil

Perf., Energy Benefits: 10 — 1000x
Area Footprint Cost: High Overall
Generality/Flexibility: Obsoletion-Prone

Core

Core

Graph, Al,
RegExp

Stencil, Scan,
Linear, Sort

Core

Competitive?
Lower?

Future Proof? [Nowatzki, 2016]

[Horowitz, 2014]

/" Accelerator Domains

7z
High-Level Synthesis
- Designed for a very specific task (C/C++ - RTL)

- Examples: FPGA, CGRA

/,

Application-Specific Architectures

> Co-designed hardware for single
application/domain

- Examples: MAERI, SIGMA, TPU, ASV

Programmability

HLS

General Purpose
> Suitable for many applications/domains

- Examples: GPU, DSP

IVE DEVELOPED A
NEL PROGRAMMING
LANGUAGE!
DIDN'T A JUDGE
ORDER YOU 0
SToP DOING THAT?

xked.com/2309

ASA

HIGHER COURT THREW
our ‘I'rl-IE RULING!

I™M BACK, SUCKERS!
parMIr;

GPU

CPU

L
2

BUT I PROMISE IT'S
GOOD THIS TIME!

1
JUST NORMAL CODE.
GOOD CLEAN SYNTAX,
NOTHING WEIRD.

J o.
N

EXCEPT THE ONLY VARIABLE NAME
15 “X" To REFER T© DIFFERENT
VARIABLES YOU HAVE TO WRITE
X" IN DFFERENT FONTS.

I™ CALLING
THE COURT.
(Y

MAYBE WJE
CAN APPEAL.
‘.‘_:.

7/ Which Accelerator?

4
" Open question with many potential research areas

Many research projects are exploring spatial accelerators
> Might be easier to program
o Common APIs and compiler infrastructure
- Energy efficient
o Similar to CGRAs
o Performant? Probably better than SIMT for some application domains

o Particle transport
- CNN/DNN (MatVec, MatMat, SpMM)

/" Spatial/Dataflow Accelerators
7z

Compilers build internal representations of applications that represent the
behavior as a series of graphs -- abstracting the control and data flow

Traditional processors execute instruction sequentially, destroying an
application’s inherent instruction-level parallelism (ILP)
o Superscalar OoO processors go to great lengths to reconstruct the ILP

o Multiple queues and complex logic allow instructions to issue when operands are
available rather than in program order

o Results are placed in additional queues and made visible to the system in program
order even if they are completed out-of-order

Dataflow architectures are able to execute these graphs directly, without the
need to flatten the graph and artificially recover the parallelism

Dataflow Graph -- multiply_test()

C++ Function
void multiply_test(int* a, int *b, int* const c) {
int f =3 * (*a);

LLVM IR

; Function Attrs: norecurse nounwind uwtable

define void @multiply_test(i32* %a, 132* %b, 132* %c) local_unnamed_addr #0 {
entry:

%0 =load 132, i32* %a, align 4, !tbaa 2

%mul = mul nsw i32 %0, 3

ret void

}

F4

Dataflow Graph -- multiply_test()

C++ Function
void multiply_test(int* a, int *b, int* const c) {
int f =3 * (*a);

%radd = add nsw i32 Zemull, %emul

F4

Dataflow Graph -- multiply_test()

C++ Function
void multiply_test(int* a, int *b, int* const c) {
int f =3 * (*a);

%1 = load i32, 132* %b, align 4, !tbaa 12 @ % = load i32, i32* %ra. align 4, !tbaa !2

store 132 Fradd. i32* e, align 4, lthaa 12

%radd = add nsw i32 Zemull, %emul

7/ Simulating Dataflow Architectures
74

There are examples of each of the different types of accelerators in the
literature
> Dedicated/Static > Shared/Static
> Softbrain > CGRA
- Dedicated/Dynamic > Shared/Dynamic
o Plasticine, SPU, MAERI o TRIPS, SGMF

Currently developing dataflow component for Structural Simulation Toolkit
(SST) for dedicated/dynamic designs

o Flexible interface to add custom PEs

o Arbitrary connectivity

> Mappers are dynamically loaded allowing them to be swapped at runtime

o Leverages SST component interface to enable scalable simulations

/ SST Dataflow Component

g
" Multiple instances, allows for different configurations/

of each instance
o Arbitrary memory hierarchy
> Some limitations on node configurations
o Reconfigurable at runtime*

PEs have a compute unit, input buffers, and output
buffers

- Number of buffers bounded by connectivity
o Buffer depth is configurable but is uniform for all PEs

Input
Queue01

Queue

Output

Input
Queue00

/7 SST llyr Component

4
" Layout constructed using a hardware description file

o Describes connectivity between PEs
> Describes allowable operations per-PE

0 [pe_type=ANYMEM] 0--1
—— MEM MEM MEM MEM —— 1 [pe_type=ANYMEM] 01
2 [pe_type=ANYMEM] 1--0
3 [pe_type=ANYMEM] 1--2
——— ARITH ARITH ARITH ARITH |—— 4 [pe_type=ANYARITH] 15
5 [pe_type=ANYARITH] 2--1
6 [pe_type=ANYARITH] 2--3
7 [pe_type=ANYARITH] 2--6
— | ARITH ARITH ARITH ARITH —— 8 [pe_type=ANYARITH] 3--2
9 [pe_type=ANYARITH] 3--7
10 [pe_type=ANYARITH] 4--1
11 [pe_type=ANYARITH] 4--5
——— MEM MEM MEM MEM | 12 [pe_type=ANYMEM] 4--8

‘4

74

/7 LLVM and llyr Parsing

User
Application LLVM Tools

@ —»

[LVM IR for ELF
Offload Executable
Other Code

Offload targets are marked in the user application - currently under study
o __attribute__ ((offload (device, 0))) myFunction()
o #pragma secret offload directive device(0)

Work in progress...

These functions/loops will be compiled with the user code but the LLVM IR will
be embedded with them in the final executable

Can be NP-complete
(factorial complexity)

/" Embedding Problem [Conte, 2004]

/
Dataflow hardware consists of a set of PEs that may have fixed or

programmable connectivity (MAERI, Softbrain, Plasticine, etc.)

A user application consists of a set of operations that map to one or more PE
types (add, sub, mul, etc.)

Goal: Map user application operations onto set of hardware PEs

/" Current Approach
4
" Running standalone VF3 implementation from the University of Salerno

Have tested VF3 on multiple graphs (up to 512 nodes)

Current problem is that constraints can result in no valid mapping
> Need a way to bypass a node
> Will require some tweaking to be able to perform lookahead in the algorithm

Node Attributes Don’'t Matter

LD

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

Node Attributes Don’'t Matter

LD ANY ANY ANY ——

MUL _ ANY ANY ANY ——

—— ANY ANY ANY ANY | ——

ST

— ANY ANY ANY ANY |[——

13720 possible mappings

Node Attributes Matter (Kind'a Sort’'a)

LD MEM MEM MEM |——
MUL _ ARITH ARITH ARITH ————

ADD
— ARITH ARITH ARITH ARITH ——

ST
— MEM MEM MEM MEM |—

32 possible mappings

/ SST llyr Component Sample Configuration

,// Llyr = sst.Component("dataflow®"”, "llyr.llyr")
> Llyr.addParams ({

"verbose": "1",

"clock" : "1GHz",

"config" : "maeri layout.cfg",

"“fp_lat" : "4",

"int lat": "1",

"div_lat": "3",

"mul_lat": "2",

)}
Parameters Additional parameters for
o clock: Operating frequency for entire device standalone/testing
o config: Input hardware layout o application: application in LLVM IR

o xxX_lat: Number of cycles to complete the operation > mem_init: memory initialization file
o queue_depth: number of buffer entries

o |s_entries: number of L/S entries to process each cycle

o mapper: app_graph - hw_graph embedding

/7 Modeling ASAs
7 .
" The hardware description should allow users Activation Cortrol Layer Topology
to emulate more constrained dataflow devices
> MAERI
o Programmable DNN accelerator
> SambaNova?
> Reconfigurable dataflow
> Others?
° ASA? MAERI
o Crossbar?

Distribution/Reduction Metwork
Control

aEeaeE
soeoane
LA - I

& Address Fatiem
“ toammnng ﬂ % | | — Ca"
Uni EnETEION fwrich :r“ i
Unit

[SambaNova, 2021

/7 Summary

4

" Advances in material science and fabrication technologies are opening the
door to the integration of exotic computing devices with traditional
architectures

Dataflow and application-specific accelerators are the most promising near-
term candidates under consideration

In simulation, these models can emulate a broad range of computational
devices

7/ Thank You’'s...

4
~~ Siva Rajamanickam, Jim Laros, and Kevin Pedretti

()

Sandia
National
Laboratories

23

/,

/

/" References

M. Horowitz, "1.1 Computing's energy problem (and what we can do about
it)," 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014, pp. 10-14, doi: 10.1109/ISSCC.2014.6757323.

J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah and T. Nowatzki, "DSAGEN:
Synthesizing Programmable Spatial Accelerators," 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), 2020, pp. 268-281,
doi: 10.1109/1SCA45697.2020.00032.

T. Nowatzki, V. Gangadhan, K. Sankaralingam and G. Wright, "Pushing the
limits of accelerator efficiency while retaining programmability," 2076 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
2016, pp. 27-39, doi: 10.1109/HPCA.2016.7446051.

7/ Devices & Architectures

d
~~ Transistor density has continued to scale well despite decreasing clock

frequency
> Vendors provide more computation on a single chip
o Scaling will probably end sometime before 2030
o 2D lithography approaching atomic scale

Regardless of transistor scaling, there is Energy (n))
ADD

still the problem of resistance 0.64
o E < bitRate * d |

, L1 2> REG 1.11
- Memory becomes a major performance and
energy bottleneck 2 = FEE el
- Fetching data for the cores becomes the L3 > REG 9.80
dominant activity in terms of energy MEM = REG 63.64
> Pushes programming models toward more Prefetch 65.08
localized data movement [Kestor, 2014]

P/ The Power Problem
7 o
74)

E
Processor Energy Breakdown P=aCVi,f >P=(nzlr;gy)(

o
N

S

Computation does not represent
the bulk of the energy!

m8 Cores ®mL1/Reg/TLB mL2 =3

29 | 6 | 3 o1p Rl

Ins Cache Register Control Add
[Horowitz, 2014]

7/ SpPMM -CSR (1 x3-3 X 2)

S |

/ © for(uint32_ti=0;i<M; ++)

for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)
for(uint32_t k=0; k <K; ++k)

result[i][k] = result[i][k] + values[j] * b[columnl[j]][k];

/7 SPMM -CSR (1 X 3-3 X 2)

S |

/ © for(uint32_ti=0;i<M; ++)

for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)
for(uint32_t k=0; k <K; ++k)

result[i][k] = result[i][k] + values[j] * b[columnl[j]][k];

/,

/

7/ SST llyr Component

PEs have a compute unit, input buffers, and output buffers
> Number of buffers bounded by connectivity
o Buffer depth is configurable but is uniform for all PEs

Current PE list
o LD, ST, LD_ST
> SLL, SLR, ROL, ROR
> ADD, SUB, MUL, DIV
> FPADD, FPSUB, FPMUL, FPDIV, FPMATMUL
> BUFFER
> ANY, ANYMEM, ANYLOGIC, ANYINT, ANYARITH, ANYFP

Input Input
Queuel0 Queuel1

Output
Queue

/,

/7 SST llyr Component

4
The hardware configuration controls the potential computation, but the

application graph controls the actual computation

LLVM IR will be extracted from the ELF executable and passed to the Ilyr
parser

Parser will construct a dataflow graph with control information (backward
edges) from the LLVM IR

void multiply_test(int* a, int *b, int* const c)
{
int d = *a;
int e = *b;

=)

intf=3%*d;
intg=2%e;

*c=f+g

7 LLVM IR to AppGraph

Application Graph

LD
%1 = load 132, i32* %b, align 4@ %0 = load 32, i32* %a, align @ I
%mull = shl i32 %1, 1 %mul = mul nsw i32 %0, 3
MUL

%add = add nsw i32 %mull, %mul

store 132 %add, i32* %c, align 4, !tbaa 12
ADD

LLVM IR

ST

