
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Simulating Next-Gen Dataflow
Architectures for HPC

Presented by Clay Hughes, Sandia National Laboratories

2022 SIAM Conference on Parallel Processing for Scientific Computing

SAND2022-

Clay Hughes, Gwendolyn Voskuilen, Arun Rodrigues,
and Simon Hammond, Sandia National Laboratories

SAND2022-2234CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

2

 Post-exascale era in computing will look much different from today’s landscape

 Slowing of Moore’s law is driving the computing community toward more
specialized forms of compute to achieve power, performance, & reliability

◦ Explosion of accelerator designs from both industry and academia

 The number of possibilities for system and node design in this new paradigm
will necessitate new simulation models and capabilities

Age of the Accelerator?

3[Nowatzki, 2016]

Processor Energy Breakdown

8 Cores L1/Reg/TLB L2 L3
[Horowitz, 2014]

 Accelerators will likely provide the best power-
performance for many domains in the future

 But how much specialization is needed?

 What are the tradeoffs?

Accelerator Domains

4

 High-Level Synthesis
◦ Designed for a very specific task (C/C++  RTL)
◦ Examples: FPGA, CGRA

 Application-Specific Architectures
◦ Co-designed hardware for single

application/domain
◦ Examples: MAERI, SIGMA, TPU, ASV

 General Purpose
◦ Suitable for many applications/domains
◦ Examples: GPU, DSP

xkcd.com/2309
Pr

og
ra

m
m

ab
ili

ty

HLS ASA GPU CPU

Which Accelerator?

5

 Open question with many potential research areas

 Many research projects are exploring spatial accelerators
◦ Might be easier to program

◦ Common APIs and compiler infrastructure
◦ Energy efficient

◦ Similar to CGRAs
◦ Performant? Probably better than SIMT for some application domains

◦ Particle transport
◦ CNN/DNN (MatVec, MatMat, SpMM)

Spatial/Dataflow Accelerators

6

 Compilers build internal representations of applications that represent the
behavior as a series of graphs -- abstracting the control and data flow

 Traditional processors execute instruction sequentially, destroying an
application’s inherent instruction-level parallelism (ILP)

◦ Superscalar OoO processors go to great lengths to reconstruct the ILP
◦ Multiple queues and complex logic allow instructions to issue when operands are

available rather than in program order
◦ Results are placed in additional queues and made visible to the system in program

order even if they are completed out-of-order

 Dataflow architectures are able to execute these graphs directly, without the
need to flatten the graph and artificially recover the parallelism

Dataflow Graph -- multiply_test()

7

LLVM IR
; Function Attrs: norecurse nounwind uwtable
define void @multiply_test(i32* %a, i32* %b, i32* %c) local_unnamed_addr #0 {
entry:
 %0 = load i32, i32* %a, align 4, !tbaa !2
 %mul = mul nsw i32 %0, 3
 %1 = load i32, i32* %b, align 4, !tbaa !2
 %mul1 = shl i32 %1, 1
 %add = add nsw i32 %mul1, %mul
 store i32 %add, i32* %c, align 4, !tbaa !2
 ret void
}

C++ Function
void multiply_test(int* a, int *b, int* const c) {
 int f = 3 * (*a);
 int g = 2 * (*b);
 *c = f + g;
}

Dataflow Graph -- multiply_test()

8

C++ Function
void multiply_test(int* a, int *b, int* const c) {
 int f = 3 * (*a);
 int g = 2 * (*b);
 *c = f + g;
}

Dataflow Graph -- multiply_test()

9

C++ Function
void multiply_test(int* a, int *b, int* const c) {
 int f = 3 * (*a);
 int g = 2 * (*b);
 *c = f + g;
}

Simulating Dataflow Architectures

10

 There are examples of each of the different types of accelerators in the
literature

◦ Dedicated/Static
◦ Softbrain

◦ Dedicated/Dynamic
◦ Plasticine, SPU, MAERI

 Currently developing dataflow component for Structural Simulation Toolkit
(SST) for dedicated/dynamic designs

◦ Flexible interface to add custom PEs
◦ Arbitrary connectivity
◦ Mappers are dynamically loaded allowing them to be swapped at runtime
◦ Leverages SST component interface to enable scalable simulations

◦ Shared/Static
◦ CGRA

◦ Shared/Dynamic
◦ TRIPS, SGMF

SST Dataflow Component

11

 Multiple instances, allows for different configurations
of each instance

◦ Arbitrary memory hierarchy
◦ Some limitations on node configurations
◦ Reconfigurable at runtime*

 PEs have a compute unit, input buffers, and output
buffers

◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs

SST llyr Component

12

 Layout constructed using a hardware description file
◦ Describes connectivity between PEs
◦ Describes allowable operations per-PE

0 [pe_type=ANYMEM]
1 [pe_type=ANYMEM]
2 [pe_type=ANYMEM]
3 [pe_type=ANYMEM]
4 [pe_type=ANYARITH]
5 [pe_type=ANYARITH]
6 [pe_type=ANYARITH]
7 [pe_type=ANYARITH]
8 [pe_type=ANYARITH]
9 [pe_type=ANYARITH]
10 [pe_type=ANYARITH]
11 [pe_type=ANYARITH]
12 [pe_type=ANYMEM]
…

0 -- 1
0 -- 4
1 -- 0
1 -- 2
1 -- 5
2 -- 1
2 -- 3
2 -- 6
3 -- 2
3 -- 7
4 -- 1
4 -- 5
4 -- 8
…

LLVM and llyr Parsing

13

 Work in progress…

 Offload targets are marked in the user application – currently under study
◦ __attribute__ ((offload (device, 0))) myFunction()
◦ #pragma secret offload directive device(0)

 These functions/loops will be compiled with the user code but the LLVM IR will
be embedded with them in the final executable

Embedding Problem

14

 Dataflow hardware consists of a set of PEs that may have fixed or
programmable connectivity (MAERI, Softbrain, Plasticine, etc.)

 A user application consists of a set of operations that map to one or more PE
types (add, sub, mul, etc.)

 Goal: Map user application operations onto set of hardware PEs

?????

Can be NP-complete
(factorial complexity)
[Conte, 2004]

Current Approach

15

 Running standalone VF3 implementation from the University of Salerno

 Have tested VF3 on multiple graphs (up to 512 nodes)

 Current problem is that constraints can result in no valid mapping
◦ Need a way to bypass a node
◦ Will require some tweaking to be able to perform lookahead in the algorithm

Node Attributes Don’t Matter

16

Node Attributes Don’t Matter

17

13720 possible mappings

Node Attributes Matter (Kind’a Sort’a)

18

32 possible mappings

SST llyr Component Sample Configuration

19

 Parameters
◦ clock: Operating frequency for entire device
◦ config: Input hardware layout
◦ xxx_lat: Number of cycles to complete the operation
◦ queue_depth: number of buffer entries
◦ ls_entries: number of L/S entries to process each cycle
◦ mapper: app_graph  hw_graph embedding

 Additional parameters for
standalone/testing
◦ application: application in LLVM IR
◦ mem_init: memory initialization file

Modeling ASAs

20

 The hardware description should allow users
to emulate more constrained dataflow devices

◦ MAERI
◦ Programmable DNN accelerator

◦ SambaNova?
◦ Reconfigurable dataflow

◦ Others?
◦ ASA?
◦ Crossbar? [Kwon, 2019]

[SambaNova, 2021]

Summary

21

 Advances in material science and fabrication technologies are opening the
door to the integration of exotic computing devices with traditional
architectures

 Dataflow and application-specific accelerators are the most promising near-
term candidates under consideration

 In simulation, these models can emulate a broad range of computational
devices

Thank You’s…

22

 Siva Rajamanickam, Jim Laros, and Kevin Pedretti

Exceptional Service In The National Interest

Thanks! Questions?

23

References

24

 M. Horowitz, "1.1 Computing's energy problem (and what we can do about
it)," 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014, pp. 10-14, doi: 10.1109/ISSCC.2014.6757323.

 J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah and T. Nowatzki, "DSAGEN:
Synthesizing Programmable Spatial Accelerators," 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp. 268-281,
doi: 10.1109/ISCA45697.2020.00032.

 T. Nowatzki, V. Gangadhan, K. Sankaralingam and G. Wright, "Pushing the
limits of accelerator efficiency while retaining programmability," 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
2016, pp. 27-39, doi: 10.1109/HPCA.2016.7446051.

Devices & Architectures

25

 Transistor density has continued to scale well despite decreasing clock
frequency

◦ Vendors provide more computation on a single chip
◦ Scaling will probably end sometime before 2030

◦ 2D lithography approaching atomic scale

Operation Energy (nJ)
ADD 0.64

L1  REG 1.11
L2  REG 2.21
L3  REG 9.80

MEM  REG 63.64
Prefetch 65.08

[Kestor, 2014]

The Power Problem

26

Computation does not represent
the bulk of the energy!

Processor Energy Breakdown

8 Cores L1/Reg/TLB L2 L3

25pJ 6pJ 39pJ 0.1pJ 70pJ
Ins Cache Register Control Add

[Horowitz, 2014]

27

 for(uint32_t i = 0; i < M; ++i)

 for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)

 for(uint32_t k = 0; k < K; ++k)

 result[i][k] = result[i][k] + values[j] * b[column[j]][k];

values[j]b[col[j]][k] b[col[j]][k]

col[j]

K

28

 for(uint32_t i = 0; i < M; ++i)

 for(uint32_t j = row_ptr[i]; j < row_ptr[i+1]; ++j)

 for(uint32_t k = 0; k < K; ++k)

 result[i][k] = result[i][k] + values[j] * b[column[j]][k];

SST llyr Component

29

 PEs have a compute unit, input buffers, and output buffers
◦ Number of buffers bounded by connectivity
◦ Buffer depth is configurable but is uniform for all PEs

 Current PE list
◦ LD, ST, LD_ST
◦ SLL, SLR, ROL, ROR
◦ ADD, SUB, MUL, DIV
◦ FPADD, FPSUB, FPMUL, FPDIV, FPMATMUL
◦ BUFFER
◦ ANY, ANYMEM, ANYLOGIC, ANYINT, ANYARITH, ANYFP

SST llyr Component

30

 The hardware configuration controls the potential computation, but the
application graph controls the actual computation

 LLVM IR will be extracted from the ELF executable and passed to the llyr
parser

 Parser will construct a dataflow graph with control information (backward
edges) from the LLVM IR

Parser

void multiply_test(int* a, int *b, int* const c)
{
 int d = *a;
 int e = *b;

 int f = 3 * d;
 int g = 2 * e;

 *c = f + g;
}

LLVM IR to AppGraph

31

LLVM IR

Application Graph

