
A Cooperative Compiler and Runtime
Checkpoint/Restart Approach for Kokkos

Akihiro Hayashi, Matthew Whitlock, Sri Raj Paul,
Nicolas Morales, Keita Teranishi, Vivek Sarkar

SIAM-PP’22, MS-38

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE- NA0003525.

SAND2022-2215CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

MOTIVATION

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

2

Performance Portability
qWrite one implementation that

§ can run on multiple platforms
§ can enable suitable memory access patterns for

different platforms
§ can exploit platform-specific features

qExamples:
§ Kokkos
§ RAJA
§ DPC++

3

Kokkos
qWhat’s Kokkos?

§ Kokkos enables single performance portable codes
üCPUs, NVIDIA GPUs, …

§ Kokkos provides data abstractions critical for
performance portability not available in OpenMP or
OpenACC (Kokkos::View)

§ Essential parallel constructs
üKokkos::parallel_for();
üKokkos::parallel_reduce();
üKokkos::parallel_scan();

4

Kokkos Example

5

View<int*> x("x", N); // Constuct a View (length: N)
// Parallel For
parallel_for(RangePolicy<>(0, N), // 1D Range (0 to N)

[=] (int i) { // C++11 lambda
x(i) = i; // Computational Body

});

int result = 0;
// Parallel Reduce
parallel_reduce(RangePolicy<>(0, N), // 1D Range (0 to N)

[=] (int i, int &update) { // C++11 lambda
update += x(i); // Computational Body

}, result); // Value to update
std::cout << result << std::endl;

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Enabling Resiliency in Performance
Portable Programs
qWhy important?

§ Increasing the number of nodes from 10,000 to 22,000
increases the probability of failures by a factor of 20x on
the Blue Waters System [1]

qTypical approach: Manual checkpointing
§ e.g., for Kokkos [2]

qResearch question: Any way to automate it?

6

[1] Martino et al. “Measuring and Understanding Extreme-Scale Application Resilience:
A Field Study of 5,000,000 HPC Application Runs” (DSN’15)

[2] Morales et al. “Towards High Performance Resilience Using Performance Portable Abstractions” (Euro-Par’21)

Big picture

7

Original Code
(Kokkos)

Parallel
Construct

Identification
Checkpoint

API
Synthesis

Source-to-source
Compiler

Instrumented
Code

(Kokkos)

Checkpoint
Profiler

Checkpoint
Frequency
Optimizer

Runtime
API

Platform-Independent
C/R Runtime

(CAC Runtime)

Checkpoint
Backend

VeloC
I/O

q We propose:
§ a source-to-source compiler that analyzes Kokkos programs and

automatically generates Checkpoint/restart API
§ a runtime provides

ü 1) platform-independent Checkpoint/restart API routines
ü 2) optimizes the frequency of checkpointing when possible

Cooperate

Related Work

Note: compilers are typically used to perform selective instruction duplication (SID) e.g., Swift

8

Language IR Note

Elkhouly et al.
Sequential C +

directive on data
access

LLVM IR Sequential

Bronevetsky et al. OpenMP C ROSE OpenMP

Lehr et al. MPI + C LLVM IR Type Safe
Checking Only

Shahneous et al. OpenSHMEM LLVM IR Suggestion Only
Our Approach Kokkos (C++) Clang AST Full translation

Related work (Cont’d)
qclang-tidy for Kokkos (not for resilience)

9

$ clang-tidy kokkos-implicit-this-capture.cpp -checks=-*,kokkos* -- -
I$PWD/Inputs/kokkos
…
warning: Lambda passed to parallel_for implicitly captures this. [kokkos-
implicit-this-capture]

10, KOKKOS_LAMBDA(int x) { my_int = x; });

https://github.com/kokkos/llvm-project/tree/master/
https://github.com/kokkos/llvm-project/tree/master/clang-tools-extra/clang-tidy/kokkos

https://github.com/kokkos/llvm-project/tree/master/
https://github.com/kokkos/llvm-project/tree/master/clang-tools-extra/clang-tidy/kokkos

DESIGN

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

10

High-level Overview (lambda)

11

Kokkos::View<int*> A(“A”, N);
Kokkos::View<int*> B(“B”, N);
for (int t = 0; t < T; t++) {

Kokkos::parallel_for(”modA”,
N, KOKKOS_LAMBDA (int i) {

A(i) = B(i);
});
…

}

Kokkos::View<int*> A(“A”, N);
Kokkos::View<int*> B(“B”, N);
loop_enter();
for (int t = 0; t < T; t++) {

loop_start(t);
Kokkos::parallel_for(”modA”,
N, KOKKOS_LAMBDA (int i) {

A(i) = B(i);
});
checkpoint(A);
…
loop_end(t);

}
loop_exit();

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9
10
11
12
13
14

TranslatedOriginal Code

High-level Overview (functor)

12

Kokkos::View<int*> A(“A”, N);
Kokkos::View<int*> B(“B”, N);
for (int t = 0; t < T; t++) {

Functor functor(A, B);
Kokkos::parallel_for("modA",
N, functor);

…
}

Kokkos::View<int*> A(“A”, N);
Kokkos::View<int*> B(“B”, N);
loop_enter();
for (int t = 0; t < T; t++) {

loop_start(t);
Functor functor(A, B);
Kokkos::parallel_for(”modA”,
N, functor);
functor.checkpoint(A);
…
loop_end(t);

}
loop_exit();

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9
10
11
12
13

TranslatedOriginal Code

struct Functor {
void operator ()(const size_t i)
const {

A(idx) = B(idx);
}
// synthesized by translator
void checkpoint() { checkpoint(A); }

};

Compiler
q Open question: How to analyze C++ program?

§ LLVM IR-based
ü Pros: Lots of analyzer and optimizer passes
ü Cons: It’s very hard to locate the start/end of a specific function

§ Clang AST-based (Our approach)
ü Pros: it’s relatively easy to locate the start/end of a specific function
ü Cons: its analyzers/optimizers would not be as powerful as LLVM’s ones

13

// ClangAST
LambdaExpr … '(lambda at test.cpp:55:40)’
| …
| - CompoundStmt …

BinaryOperator … int' lvalue '=‘
| -CXXoperatorCallExpr … ‘int' lvalue '()’
| | …
| | -DeclRefExpr … 'const Kokkos::View<int *>’ … ‘A’

…

Compiler (Cont’d)
q Checkpoint API insertion

1. Identify Kokkos constructs in user’s program
ü Kokkos::parallel_for, reduce, scan

2. Analyze the body of a lambda expression/the parenthesis
operator and identify which View is used

3. Insert checkpoint API immediately after Kokkos::parallel_for
ü Optimization: do not checkpoint a View that is read-only

q Loop API Insertion
§ Insert loop_enter(), loop_start(), loop_end(), loop_exit() to all for-

loops

14

Note: the current implementation performs the above actions
for each lambda and it does not do any data flow analyses to
analyze the lifetime of Views.

How robust is the compiler?
qOur compiler is able to translate 9 Kokkos

applications including 3 real-world applications

15

Benchmark Suite Benchmark
N/A Heat-Dist, NimbleSM

Polybench MPI (stencil) Jacobi-1D/2D, Heat-3D,
Fdtd-2D, Seidel-2D

Mantevo miniAero/miniFE

CAC Runtime
qProvides a generic checkpoint/restart API

independent of datatype and checkpoint runtime
§ Uses Kokkos::ViewHolderBase for de-templating Views

but keeping memory information
üKokkos::View<int*>, Kokkos::View<double*>, …

§ Keeps format of Resilient Kokkos [1] configuration file
to enable changing checkpoint backends without
application code changes
üVeloC, StdFile, …

16
[1] Morales et al. “Towards High Performance Resilience Using Performance
Portable Abstractions” (Euro-Par’21)

CAC Runtime (Cont’d)
qGathers checkpoint regions within loops for

write aggregations
qAutomatically updates loop iteration variables

after recovery
qDynamically optimizes checkpoint frequency

§ User provides estimated MTBF
§ Calculates time-weighted average checkpoint cost

17

IMPLEMENTATION

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

18

Implementation

q Compiler: implemented as a Clang’s tool (executable)
q Runtime: a standalone library which depends on

§ Kokkos-Resilience (Proprietary)
§ VeloC: https://veloc.readthedocs.io/en/latest/

19

Original Code
(Kokkos)

Parallel
Construct

Identification
Checkpoint

API
Synthesis

Source-to-source
Compiler

Instrumented
Code

(Kokkos)

Checkpoint
Profiler

Checkpoint
Frequency
Optimizer

Runtime
API

Checkpoint
Backend

VeloC

I/O

Platform-Independent
C/R Runtime

(CAC Runtime)

https://veloc.readthedocs.io/en/latest/

PRELIMINARY EVALUATIONS

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

20

Applications
q Platform:

§ Sandia Machine: Kahuna
ü a dual socket intel E5-2683v3 2.00GHz CPU (28 cores)
ü High memory data-analytics machine (256GB)
ü 56GB/s FDR Infiniband network
ü CephFS distributed filesystem

q Application: Heat-distribution (MPI+Kokkos)
§ 4-points iterative stencil kernel
§ Variants:

ü Raw VeloC
ü Auto-translated by the compiler + CACRuntime

21

Heat-distribution
qParameters

§ 8 nodes
ü256MB checkpoint per node

§ 6 Checkpoints per (non-failing) run
qContrived MTTF

§ On the order of seconds

22

Heat-distribution Results

23

q CACRuntime
§ Very similar to the baseline

without failures
§ Some more overhead in

recovery
ü Doesn’t know to skip

restoring initialization views
ü Checkpoints an additional

time after recovery
§ Our version checkpoints as

frequently as the raw version
after frequency optimization

§ Our version does not require
any manual checkpointing

Lower is better

CONCLUSIONS

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

24

Conclusions
q Introduced A Cooperative Compiler and Runtime

Checkpoint/Restart Approach for Kokkos
§ Compiler automatically generates checkpoint/restart

API
ü robust enough to translate 9 Kokkos+MPI applications

§ Runtime automatically
üperforms write aggregation
üoptimizes the frequency of checkpointing
üupdates loop iteration variables after recovery

25

Future Work
q Evaluate other applications

§ An MPI version of Polybench
§ Mantevo
§ NimbleSM

qCompare our approach with Kokkos-Resilience [1]
q Enhance the CACRuntime

§ Asynchronous Checkpointing
§ Runtime Alias Checking

qUse GPUs

26
[1] Morales et al. “Towards High Performance Resilience Using Performance
Portable Abstractions” (Euro-Par’21)

