Thi d ib biecti >chnicaliresul d analysis.“Any-subjective; vi -orjopinions; th: ightibe~ di -
G = ST s e e e e e Eonnees MMANaged SAND2022-2215C
eorgia National and operated by National | echnology & Engineering Solutions of
Tech Laboratories Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE- NA0O003525.

A Cooperative Compiler and Runtime
Checkpoint/Restart Approach for Kokkos
SIAM-PP’22, MS-38

Akihiro Hayashi, Matthew Whitlock, Sri Raj Paul,
Nicolas Morales, Keita Teranishi, Vivek Sarkar

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

MOTIVATION

Georgia @ ﬁa“-dia
ational
Tech|| Laboratories

Performance Portability

J Write one implementation that

= can run on multiple platforms

= can enable suitable memory access patterns for
different platforms

= can exploit platform-specific features
J Examples:

= Kokkos

= RAJA

= DPC++

Georgia @ Nt
Tech || Laboratories

Kokkos

JWhat’s Kokkos?

= Kokkos enables single performance portable codes
v CPUs, NVIDIA GPUs, ...

= Kokkos provides data abstractions critical for
performance portability not available in OpenMP or
OpenACC (Kokkos::View)

= Essential parallel constructs
v Kokkos::parallel_for();
v Kokkos::parallel_reduce();
v Kokkos::parallel_scan();

cegroia ()
Tech , Laboratories

Kokkos Example

1 View<int*> x("x", N); // Constuct a View (length: N)
2 // Parallel For

3 parallel_for(RangePolicy<>(@, N), // 1D Range (@ to N)
4 [=] (int 1) { // C++11 lambda

5 x(1) = // Computational Body
6 1)

7

8 1int result = 0;

9 // Parallel Reduce

10 parallel_reduce(RangePolicy<>(0, N), // 1D Range (@ to N)
11 [=] (int 1, int &update) { // C++11 lambda

12 update += x(1); // Computational Body
13 }, result); // Value to update

14

std::cout << result << std::endl;

Georgia @ Natoos
Tech || Laboratories ’

Enabling Resiliency in Performance

Portable Programs

JWhy important”

= |ncreasing the number of nodes from 10,000 to 22,000
Increases the probability of failures by a factor of 20x on
the Blue Waters System [1]

 Typical approach: Manual checkpointing
= e.g., for Kokkos [2]
J Research question: Any way to automate it”?

[1] Martino et al. “Measuring and Understanding Extreme-Scale Application Resilience:
A Field Study of 5,000,000 HPC Application Runs” (DSN’15)
[2] Morales et al. “Towards High Performance Resilience Using Performance Portable Abstractions” (Euro-Par’21)

Georgia @ Sandia
National]
Tech , Laboratories °

Big picture

Parallel
Construct

» Identification
Checkpoint

Runtime

Checkpoint Checkpoint
Profiler Backend

»

API
ok Checkpoint
_ Frequency
_7 SyntheSIS / Optimizer
o Instrumented
Original Code SourCce-to-llsource Code Platform-Independent
(Kokkos) ompiler (Kokkos) C/R Runtime
2 We propose: (CAC Runtime)

Georgia
Tech

(= a source-to-source compiler that analyzes Kokkos programs and

automatically generates Checkpoint/restart API

= a runtime provides
v 1) platform-independent Checkpoint/restart API routines
v' 2) optimizes the frequency of checkpointing when possible

Sandia
ﬂ'] National

Laboratories

Related Work

Language IR Note
Sequential C +
Elkhouly et al. directive on data LLVM IR Sequential
access
Bronevetsky et al. OpenMP C ROSE OpenMP
Type Safe
Lehr et al. MPI + C LLVM IR Checking Only

Shahneous et al. OpenSHMEM LLVM IR Suggestion Only

Our Approach Kokkos (C++) Clang AST Full translation

Note: compilers are typically used to perform selective instruction duplication (SID) e.g., Swift

cegraia (7 i
Tech , Laboratories

Related work (Cont’d)

dclang-tidy for Kokkos (not for resilience)

$ clang-tidy kokkos-implicit-this-capture.cpp -checks=-*, kokkos* -- -
I$PWD/Inputs/kokkos

quning: Lambda passed to parallel_for implicitly captures this. [kokkos-
implicit-this-capture]
10, KOKKOS_LAMBDA(int x) { my_int = x; });

https://github.com/kokkos/llvm-project/tree/master/
https://github.com/kokkos/llvm-project/tree/master/clang-tools-extra/clang-tidy/kokkos

i Sandia
Gec_)rregclﬁ @ National 9

Laboratories

https://github.com/kokkos/llvm-project/tree/master/
https://github.com/kokkos/llvm-project/tree/master/clang-tools-extra/clang-tidy/kokkos

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

DESIGN

Georgia @ vandia
ational
Tech|| Laboratories

10

High-level Overview (lambda)

Kokkos: :View<int*> A(“A”, N);
Kokkos: :View<int*> B(“B”, N);
loop_enter();

for (int t =0; t < T; t++) {

Original Code

1 Kokkos: :View<int*> A(“A”, N);
2 Kokkos::View<int*> B(“B”, N);
3 for (int t =0; t < T; t++) {

s

4 Kokkos: :parallel_for(”’modA”,
5 N, KOKKOS_LAMBDA (int 1) {
6 ACi) = B(1);

7

8

9

}

cegroia ()
Tech , Laboratories

1
2
3

O oo~ O Ul p

10
11
12
13

}

loop_start(t);

Kokkos: :parallel_for(”’modA”,

N, KOKKOS_LAMBDA (int 1) {
ACi) = B(1);

};

checkpoint(A);

loop_end(t);

14 loop_exit();

4

High-level Overview (functor)

Original Code

Kokkos: :View<int*> A(“A”, N);

Kokkos: :View<int*> B(“B”, N);

for (int t =0; t < T; t++) {
Functor functor(A, B);
Kokkos: :parallel_for("modA",
N, functor);

Translated

1 Kokkos::View<int*> A(“A”, N);
2 Kokkos: :View<int*> B(“B”, N);
loop_enter();
for (int t =0; t < T; t++) {
loop_start(t);
Functor functor(A, B);

struct Functor {
} void operator ()(const size_t 1)
const {
A(idx) = B(idx);
ks

// synthesized by translator
void checkpoint() { checkpoint(A);

s

coNOUTRAWN P

H
\im

Kokkos: :parallel_for(”modA”,
N, functor);
functor.checkpoint(A);

coNOUTHA~ W

1 {oop_end(t);
12 %

13 loop_exit();

cegroia () i
Tech , Laboratories

. B

Compiler

 Open question: How to analyze C++ program?
= LLVM IR-based

v Pros: Lots of analyzer and optimizer passes
v Cons: It’s very hard to locate the start/end of a specific function

= Clang AST-based (Our approach)
v Pros: it’s relatively easy to locate the start/end of a specific function
v' Cons: its analyzers/optimizers would not be as powerful as LLVM’s ones

// ClangAST
LambdaExpr .. '(lambda at test.cpp:55:40)’
| ..
| - CompoundStmt ..
BinaryOperator .. int' lvalue '=°¢
| -CXXoperatorCallExpr .. ‘int' lvalue ')’
I
| | -DeclRefExpr .. 'const Kokkos::View<int *>’ .. ‘A’

Gegraia @ Natioal
Tech , Laboratories 13

Compiler (Cont’d)

J Checkpoint API insertion

1. ldentify Kokkos constructs in user’s program
v Kokkos::parallel_for, reduce, scan

2. Analyze the body of a lambda expression/the parenthesis
operator and identify which View is used

3. Insert checkpoint APl immediately after Kokkos::parallel_for
v" Optimization: do not checkpoint a View that is read-only

J Loop API Insertion

= [nsert loop_enter(), loop_start(), loop_end(), loop_exit() to all for-
loops

Note: the current implementation performs the above actions
Georgia @ Sandia for each lambda and it does not do any data flow analyses to

National analyze the lifetime of Views.
Tech Laboratories y

How robust is the compiler?

JOur compiler is able to translate 9 Kokkos
applications including 3 real-world applications

Benchmark Suite Benchmark
N/A Heat-Dist, NimbleSM

Jacobi-1D/2D, Heat-3D,
Fdtd-2D, Seidel-2D

Mantevo miniAero/miniFE

i Sandia
Ge(_)rregclﬁ @ National 15

Laboratories

Polybench MPI (stencil)

CAC Runtime

J Provides a generic checkpoint/restart API
iIndependent of datatype and checkpoint runtime

= Uses Kokkos::ViewHolderBase for de-templating Views
but keeping memory information
v Kokkos::View<int*>, Kokkos::View<double*>, ...

= Keeps format of Resilient Kokkos [1] configuration file
to enable changing checkpoint backends without
application code changes
v VeloC, StdFile, ...

Georgia Sandia [1] Morales et al. “Towards High Performance Resilience Using Performance 1
Yech National Portable Abstractions” (Euro-Par’21) 16 W
Laboratories

CAC Runtime (Cont’d)

JGathers checkpoint regions within loops for
write aggregations

JAutomatically updates loop iteration variables
after recovery

JdDynamically optimizes checkpoint frequency
= User provides estimated MTBF
= Calculates time-weighted average checkpoint cost

Georgia @ Sandia \
National W
Tech , Laboratories L

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

IMPLEMENTATION

Georgia @ ﬁa“-dia
ational
Tech|| Laboratories

18

Implementation

Parallel
Construct Checkpoint Checkpoint
» Identification » Runtime Profiler Backend
n API
Checkpoint Checkpoint
I 4 AP : 7 Frequency BN
Synthesis Optimizer 1/O
Instrumen
Original Code Source-to-source strumented Platform-Independent
(Kokkos) Compiler Code C/R Runtime
(Kokkos)

(CAC Runtime)

d Compiler: implemented as a Clang’s tool (executable)
J Runtime: a standalone library which depends on

= Kokkos-Resilience (Proprietary)

= VeloC: https://veloc.readthedocs.io/en/latest/

cegraia (7 i
Tech Laboratories

https://veloc.readthedocs.io/en/latest/

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

PRELIMINARY EVALUATIONS

Georgia @ ﬁa“-dia
ational
Tech|| Laboratories

20

Applications

J Platform:

= Sandia Machine: Kahuna
v" a dual socket intel E5-2683v3 2.00GHz CPU (28 cores)
v High memory data-analytics machine (256GB)
v 56GB/s FDR Infiniband network
v CephFS distributed filesystem
 Application: Heat-distribution (MPIl+Kokkos)
= 4-points iterative stencil kernel

= Variants:
v Raw VeloC
v" Auto-translated by the compiler + CACRuntime

Georgia @ Nt
Tech || Laboratories

21

Heat-distribution

JParameters

= 8 nodes
v 256MB checkpoint per node

= 6 Checkpoints per (non-failing) run
JContrived MTTF
= On the order of seconds

Georgia @ Sandia
National
Tech || Laboratories

Heat-distribution Results

Checkpoint Overhead, CACRuntime vs VeloC J CACRuntime

Lower is better) i e = \ery similar to the baseline
Bl Without Failure . .
without failures

= Some more overhead in
recovery

v Doesn’t know to skip
restoring initialization views

v Checkpoints an additional
time after recovery
= Qur version checkpoints as
frequently as the raw version
after frequency optimization

= Our version does not require
any manual checkpointing

120 -

100 -

80 -

60 -

Execution Time (s)

40 -

20 -

CACRuntime

Georgia @ Notons
Tech || Laboratories »

Raw VeloC

A Cooperative Compiler and Runtime Checkpoint/Restart Approach
for Kokkos

CONCLUSIONS

Georgia @ ﬁa“-dia
ational
Tech|| Laboratories

24

Conclusions

 Introduced A Cooperative Compiler and Runtime
Checkpoint/Restart Approach for Kokkos

= Compiler automatically generates checkpoint/restart
API

v'robust enough to translate 9 Kokkos+MPI applications

= Runtime automatically
v performs write aggregation
v optimizes the frequency of checkpointing
v updates loop iteration variables after recovery

cegraia () i
Tech , Laboratories

Future Work

J Evaluate other applications
= An MPI version of Polybench
= Mantevo
= NimbleSM
J Compare our approach with Kokkos-Resilience [1]

J Enhance the CACRuntime

= Asynchronous Checkpointing
= Runtime Alias Checking

J Use GPUs

Georadia Sandia [1] Morales et al. “Towards High Performance Resilience Using Performance 1
Te%h National Portable Abstractions” (Euro-Par’21) 26 D
: Laboratories

