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/" What is Radiation-Induced Segregation (RIS)?

Dark field image showing Ni;Si precipitation
in a Ni-8 at.% Si alloy irradiated at 600°C by
400 keV protons to a dose of 0.25 dpa'~.

TEM images of proton irradiated 316L
stainless steel after electrochemical etching,
and a schematic of the grain boundary?.




The evolution of radiation damage involves complex processes
across scales

Picoseconds

Microseconds - Days Seconds - Years

Tens of nm Hundreds of nm - Hundreds of pm

Molecular Dynamics —Iﬁneﬂc Monte Caﬂo —— Rate Theory
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"SPECIAL" PHYSICS RADIATION DAMAGE RADIATION EFFECTS

* keV-energy collision between *  Defect pro.duction: ° Hard'ening
nuclei Frenkel pairs, Cascade * Swelling

® Energy loss to electronic Transmutation *  Embrittlement
excitation Segregation

* Transition to high P-T Amorphization
* Long term relaxation Sputtering




" What are the microstructural features of interest?
74 Composition evolution

/'« Field variables:
* aXoc {,o-:_ﬁ
« Species: X, and Xg V- |2a Zﬁ (Vﬂﬁ + sign(d)Vuy)

« Point Defects: X, X, Xig
Defect Clusters: Xyc Xiac Xigc

via T va,.r:ae + Rv,iac
Irradiatlon environment

- Interactions: faxd t5pXa ;. | )
- Diffusion of point defects and species A and B = V|2 Zﬁ (szgn(d)‘?ﬁﬁ +Vig) | +
« Point defect recombination Ryccom T Rasink
« Point defect-defect cluster interactions « Xve _ p Y R
: ar _ wwye T &atliavc
* Inthese terms, changes to defect concentrations 5

directly effect the concentrations of the Aand B 9Xixc _

species ot (Rw: iac T ch LBC) RV focC /
« Point defect and defect cluster evolution at Radiation damage evolution
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// Phase-field method to track the spatio-temporal evolution of both
radiation damage and local composition evolution
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/" Methodology: Damage insertion mechanisms
4
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Point Defect Concentration

Low dose rates result in lower defect densities
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/" Increasing dose rate results in a reduction in RIS

Increasing dose rate .
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/" Increasing dose rate increases incubation dose

Sink Concentration
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// The effect of incident particle type:
FP vs. Cascade-like insertion has a dose rate dependent effect
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Proxy Dose Rate (DPA/s)

Proxy Dose Rate (DPA/s)
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Proxy Dose Rate (DPA/s)
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P Conclusions

We have illustrated the strong dependence of RIS on the presence of defect sinks to serve
as nucleation sites for segregation.

A reduction in dose rate results in a reduction of the incubation dose and an increase in
the progression of RIS at equivalent doses.

- Different damage insertion techniques result in measurable differences in RIS behavior,
with FP insertion enhancing RIS development at very high dose rates and cascade-like
insertion enhancing RIS development at lower dose rates.

« The effect of compensating for changes in dose rate can be achieved in part by shifting the
dose at which a specific RIS behavior is observed in a proxy condition to that in a targeted
environment.
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