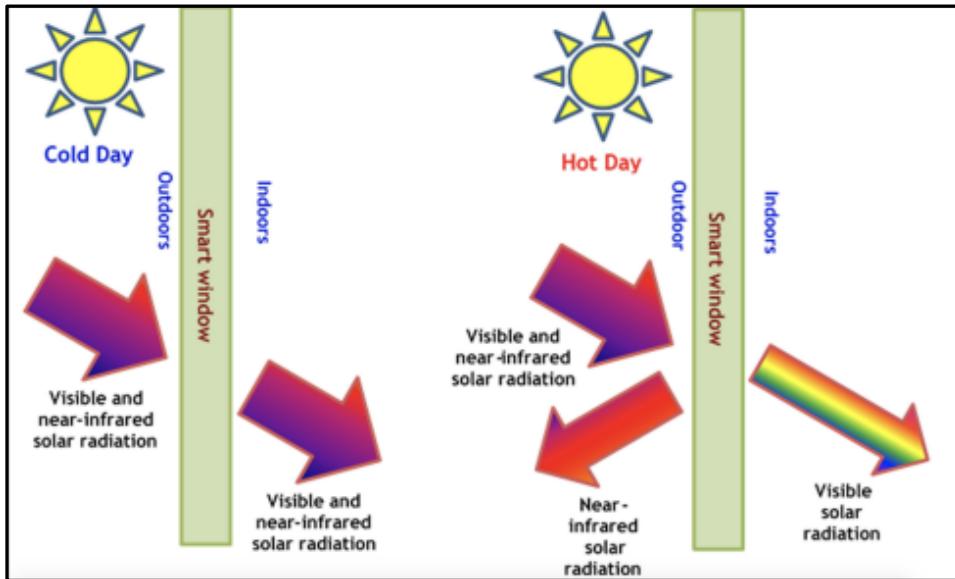


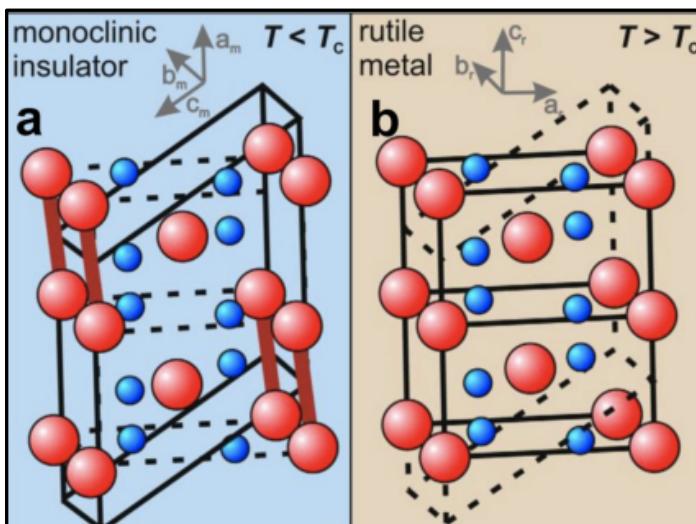
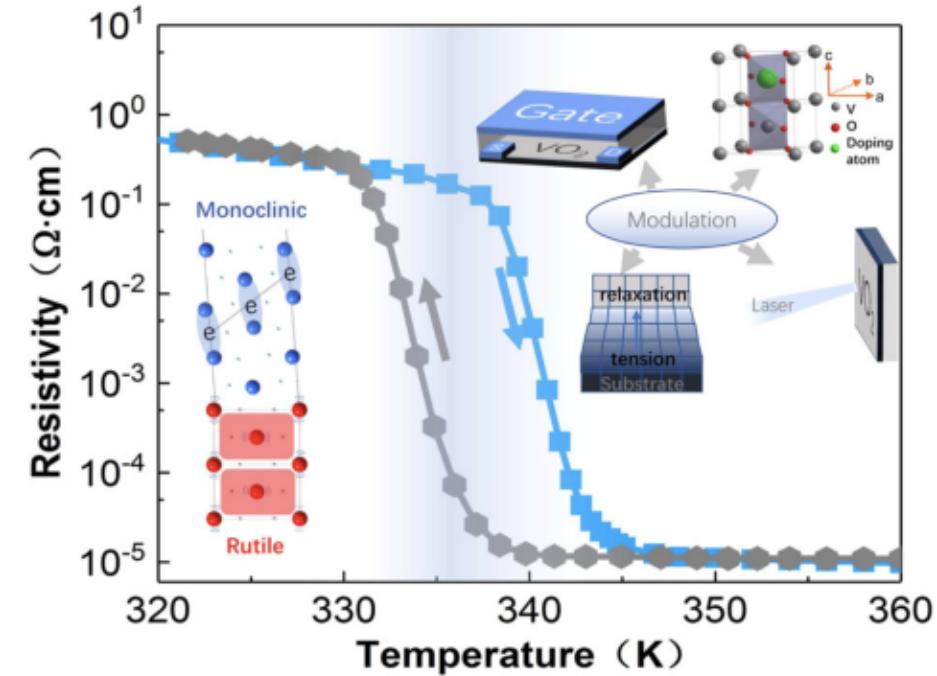
Decoding VO_x diffraction patterns using machine learning

Saaketh Desai¹, Suvo Banik^{2,3}, Haidan Wen²,
Subramanian Sankaranarayanan^{2,3}, Remi
Dingreville¹, Integrated Nanotechnologies, Sandia National
Laboratories, ²Center for Nanoscale Materials, Argonne
National Laboratory, ³Dept. of Mechanical and Industrial
Engineering, UIC

Metal to insulator transition in VO_x



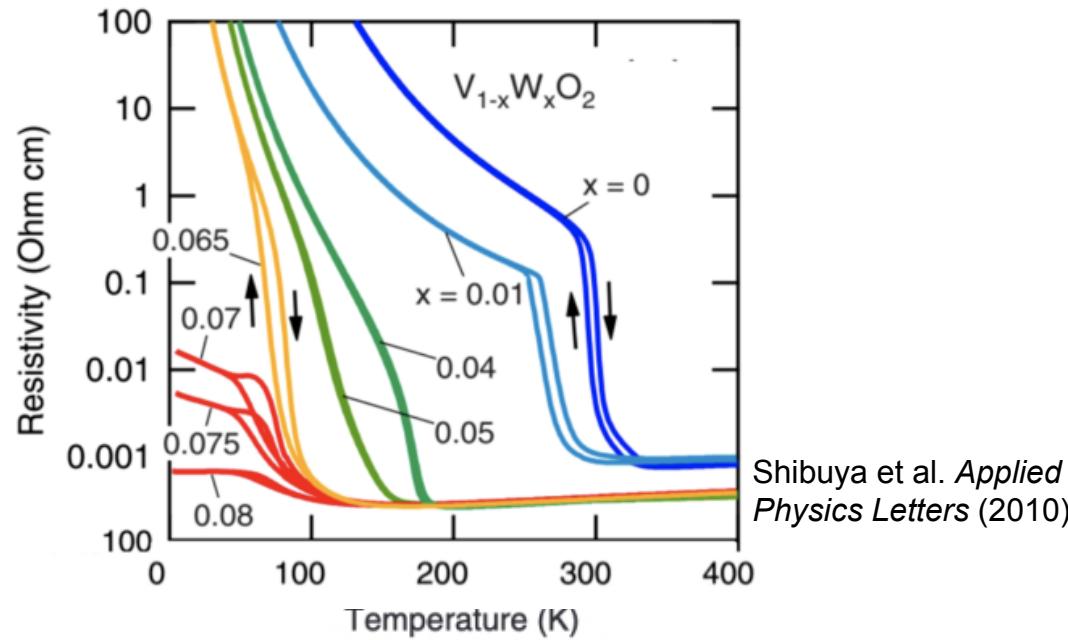
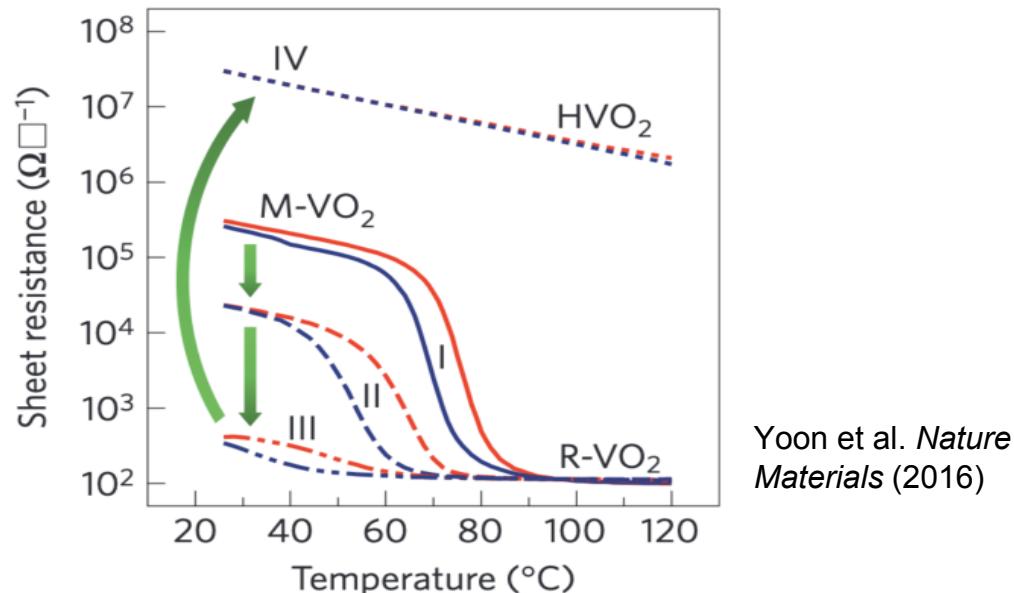
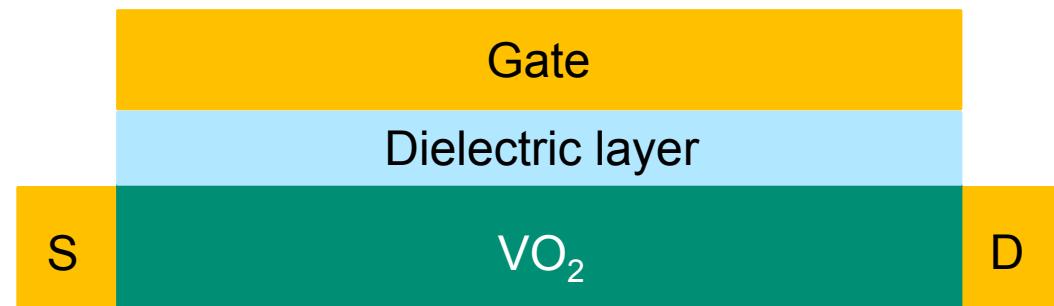
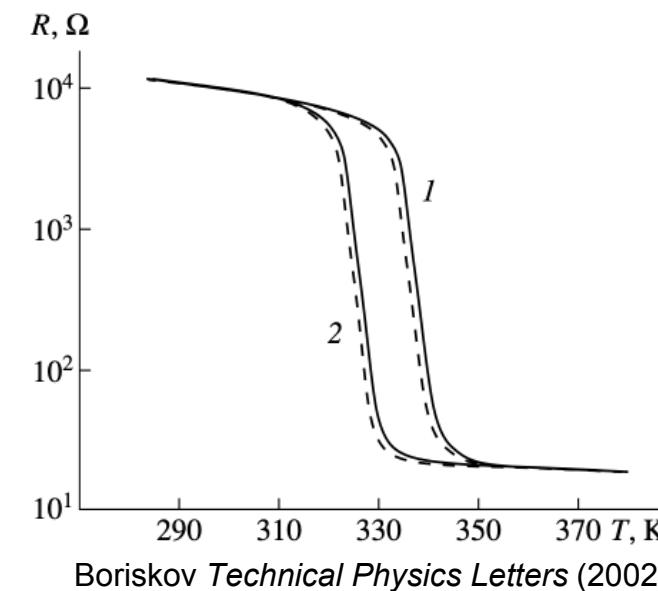
Source: nist.gov



Shao et al. *NPG Asia Materials* (2018)

- VO_2 transforms from a metal to an insulator at 68°C
- Coincides with monoclinic to tetragonal transformation
- Applications: Smart window coatings, holographic memory, thermal IR imaging

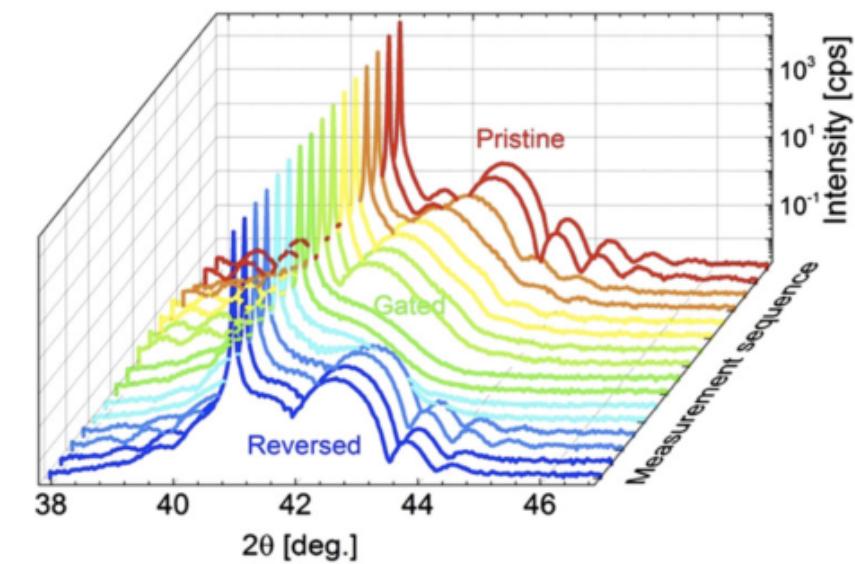
Controlling the metal to insulator transition in VO_x



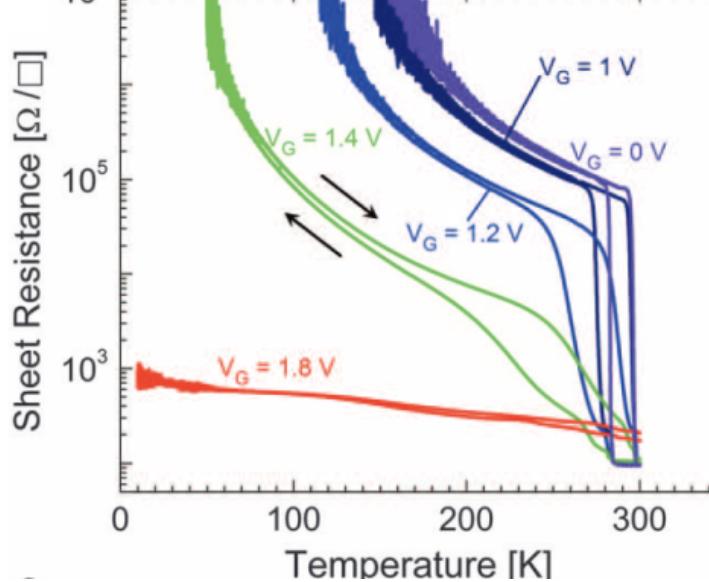
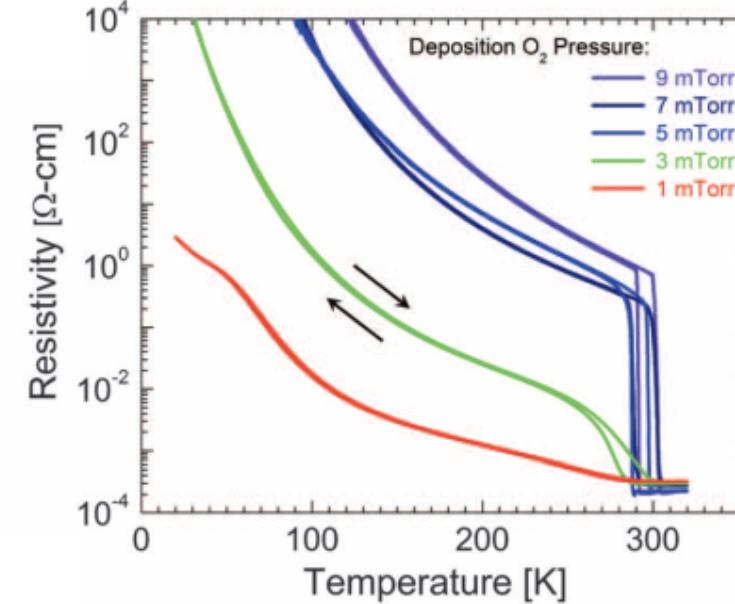
Doping elements change transformation
Gate voltage induces transformation

Vacancy induced suppression of MIT

Jeong et al. PNAS (2015)



(002) peak shifts left on gating (opposite of PT)



Electrolyte gating induces oxygen vacancies in VO₂

Oxygen vacancies induce metallization in the monoclinic state while expanding lattice

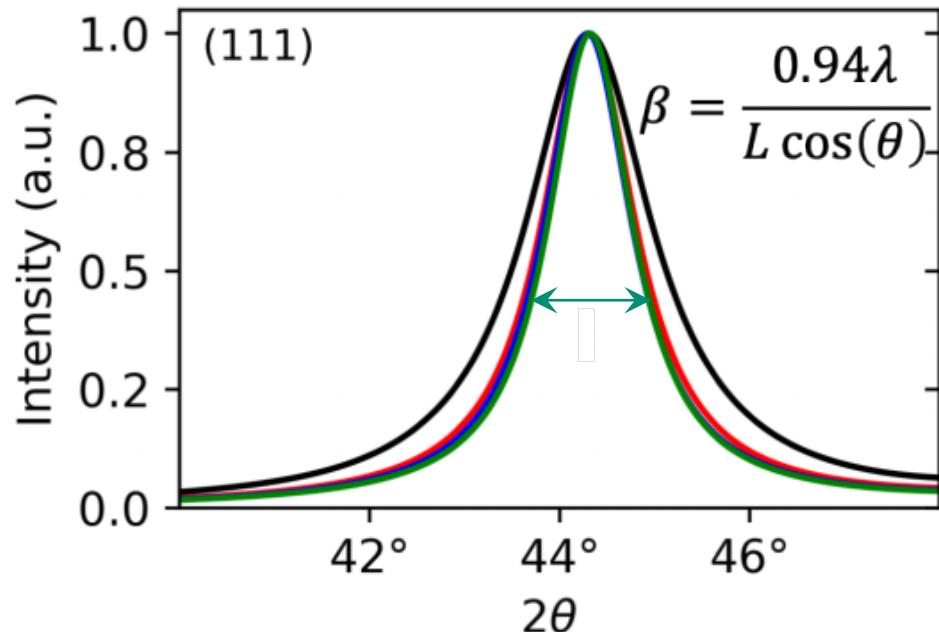
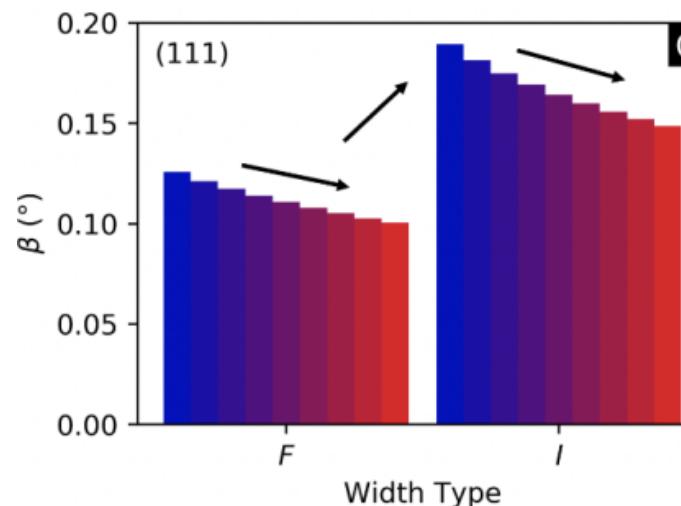
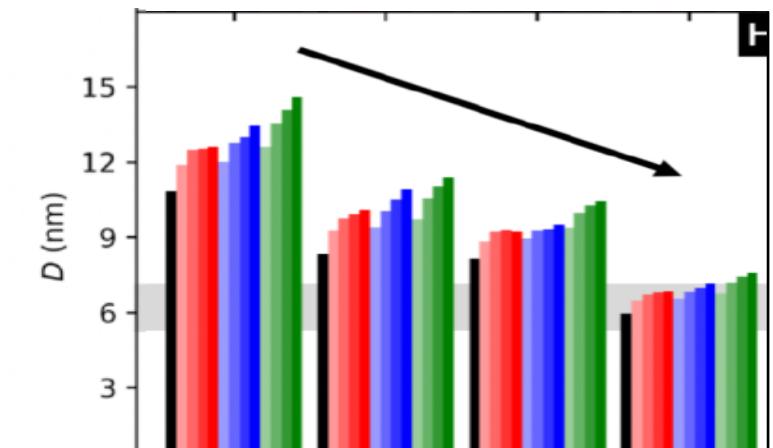
Near neighbor distances [Å]		
Atom pair	Pristine	Gated
V-O	1.86	1.95
V-O	2.06	
V-V(intra dimer)	2.61	2.94
V-V(inter dimer)	3.03	3.16
V-V	3.49	3.53

Decoding diffractograms to extract defect statistics

What defect statistics resulted in the metallization of mamc-VO_x ?

Diffractograms = non-intrusive way to proxy defect statistics

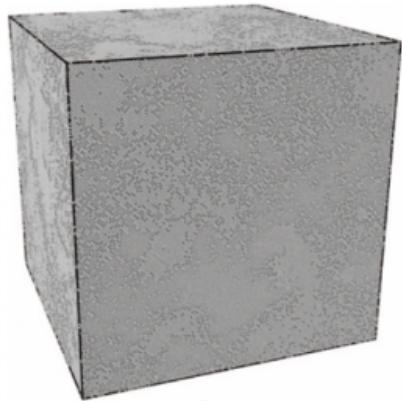
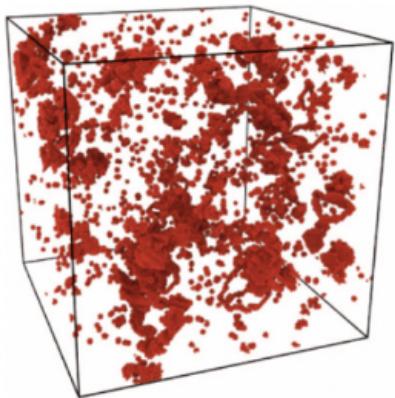
How do we decode VO_x diffractograms and relate them to defect statistics?



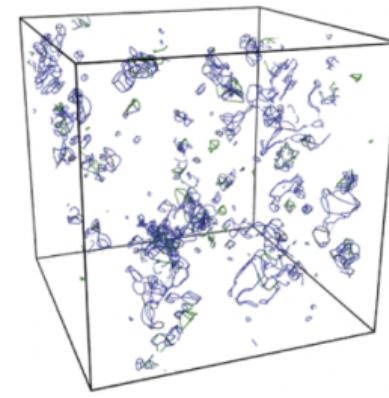
Manual decoding methods may not capture all information accurately

Using machine learning to decode diffraction patterns

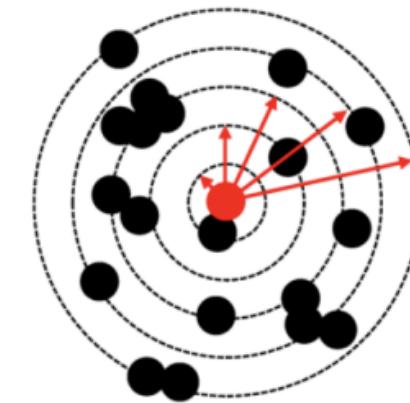
Irradiated copper



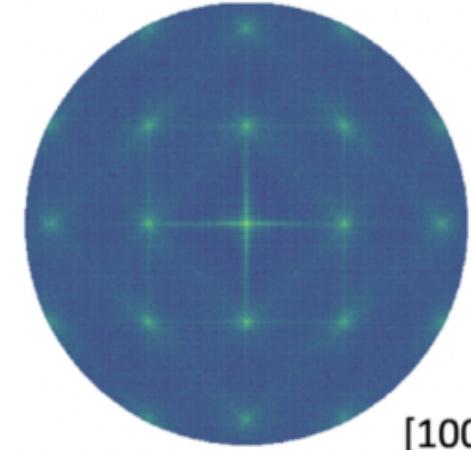
Point defect density



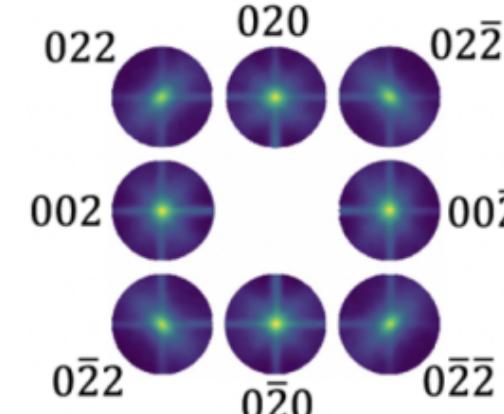
Dislocation density



Pair correlation function

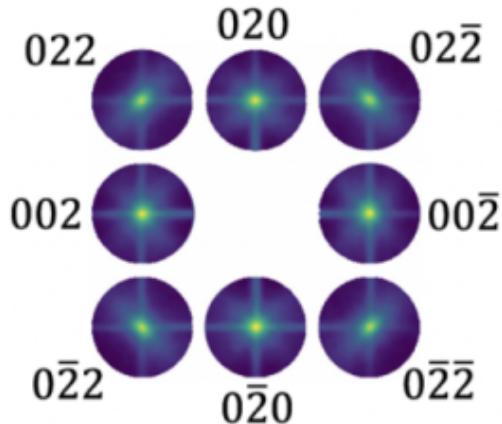
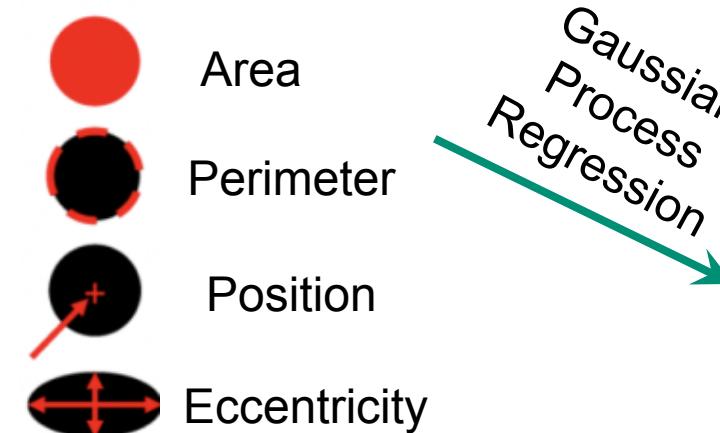


SAED pattern



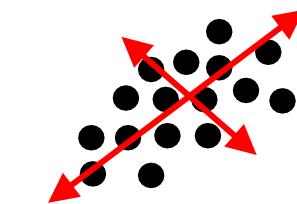
Processed pattern

Using machine learning to decode diffraction patterns



Gaussian
Process
Regression

Point defect density

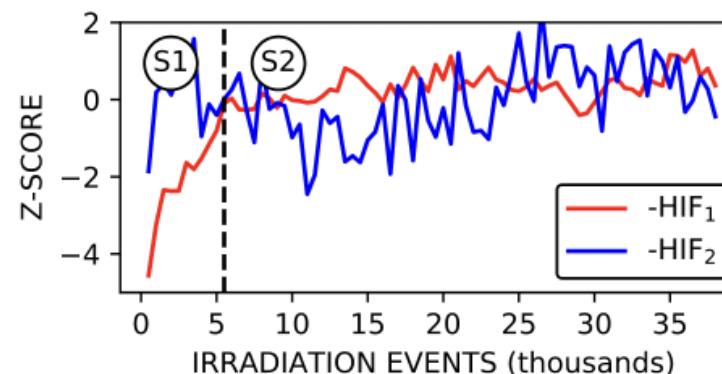
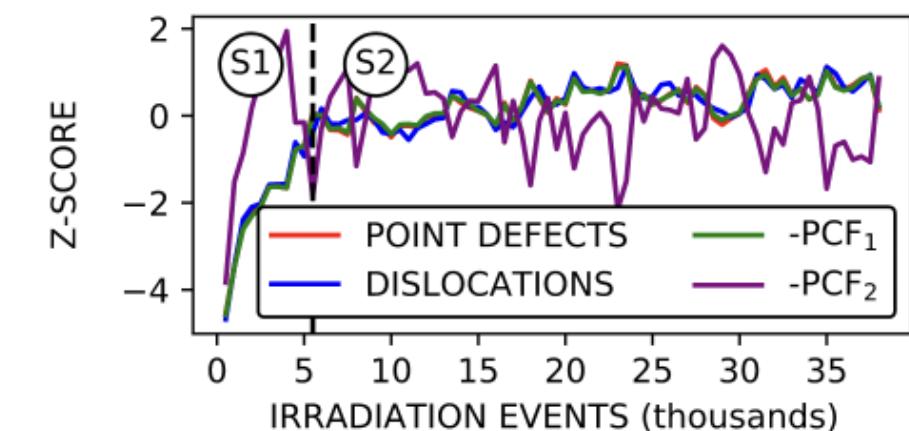


Gaussian
Process
Regression

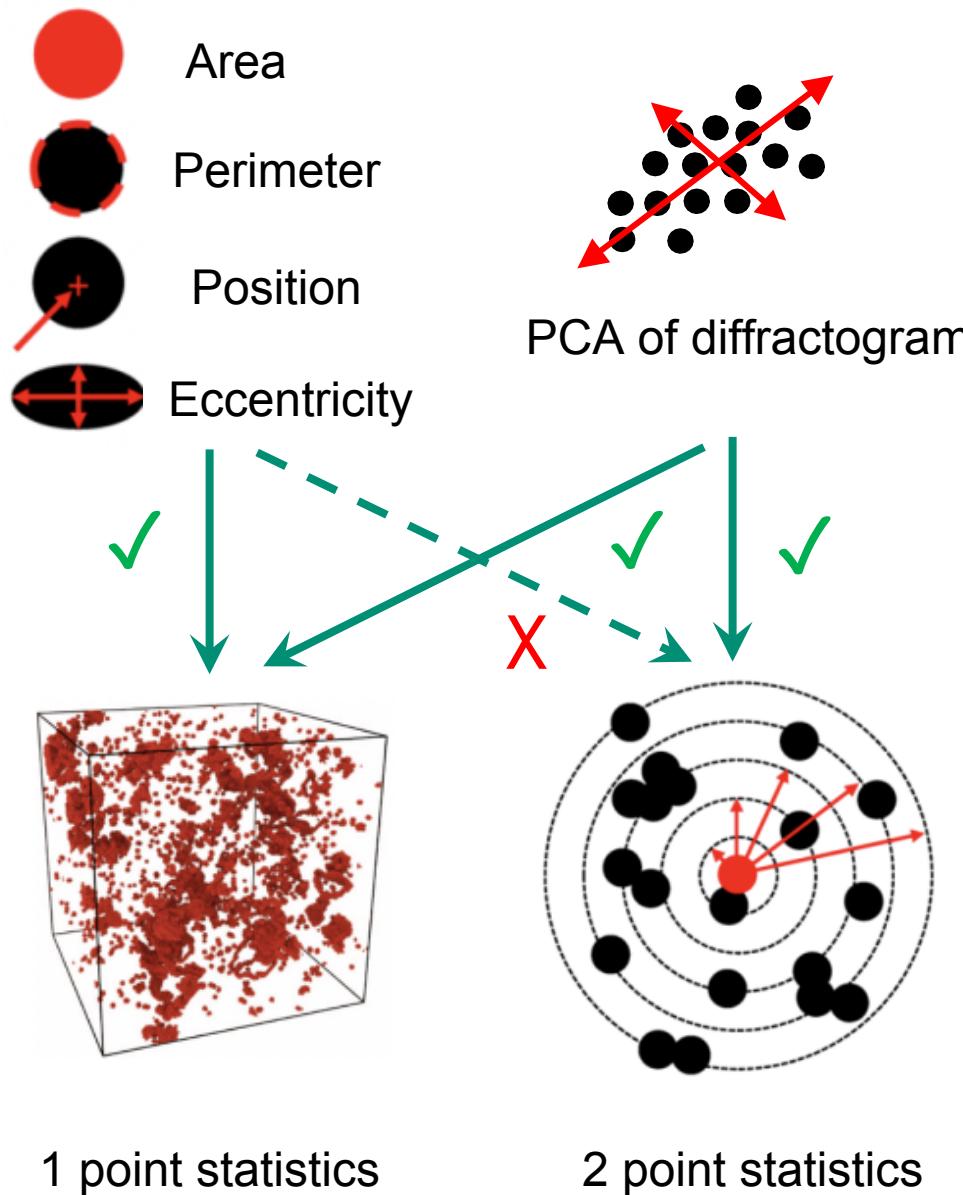
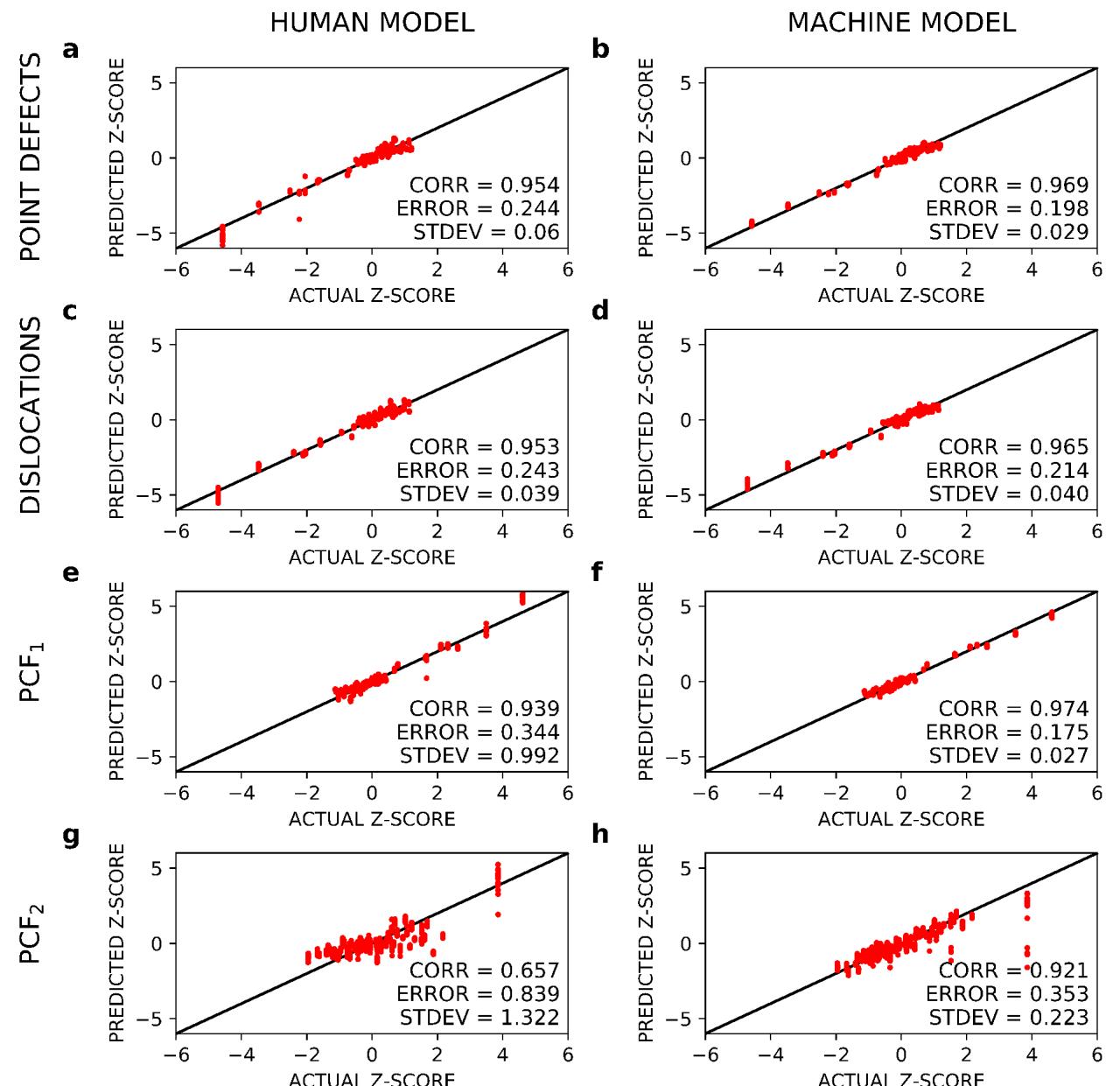
Dislocation density

PCA of diffractogram

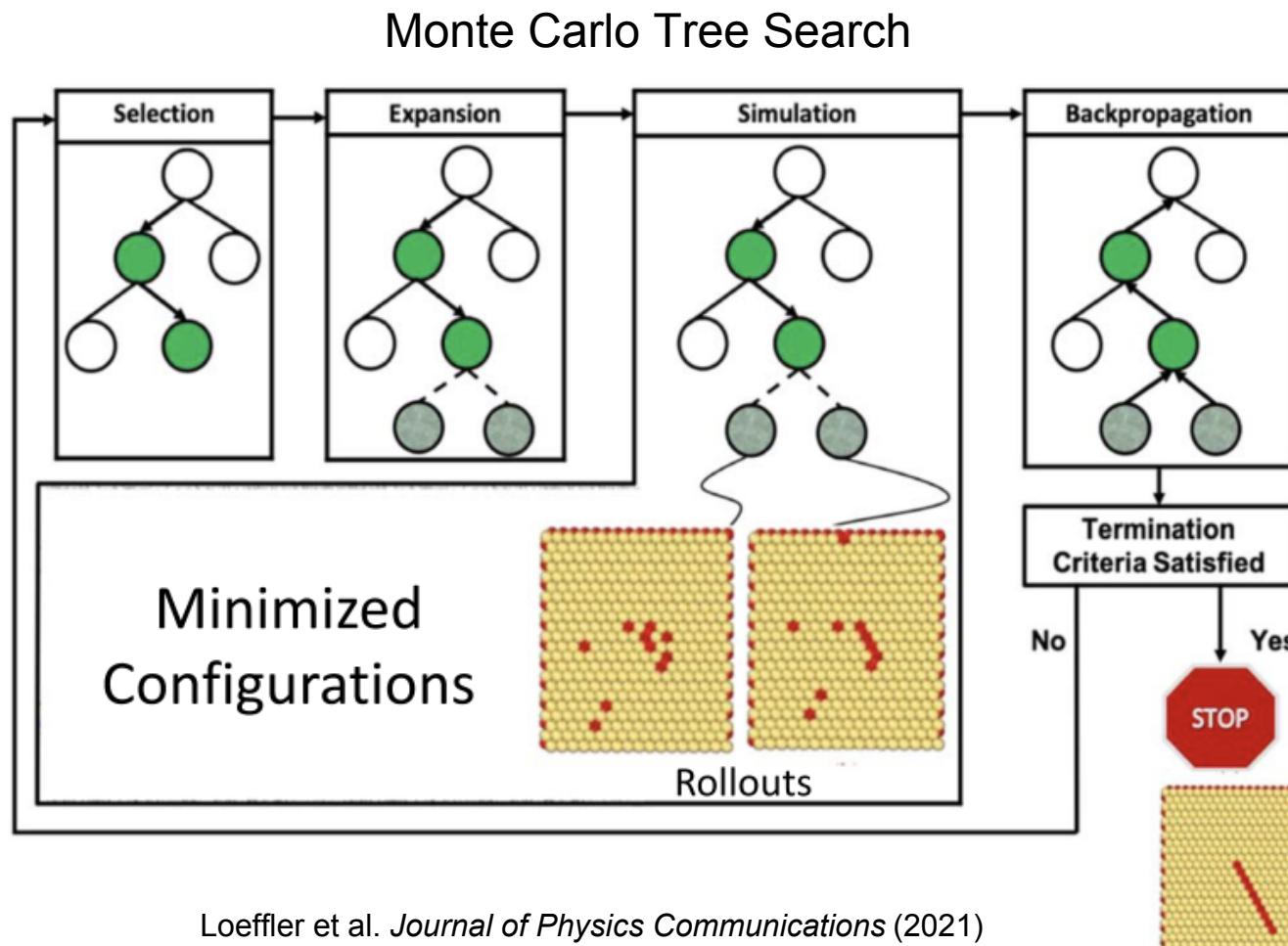
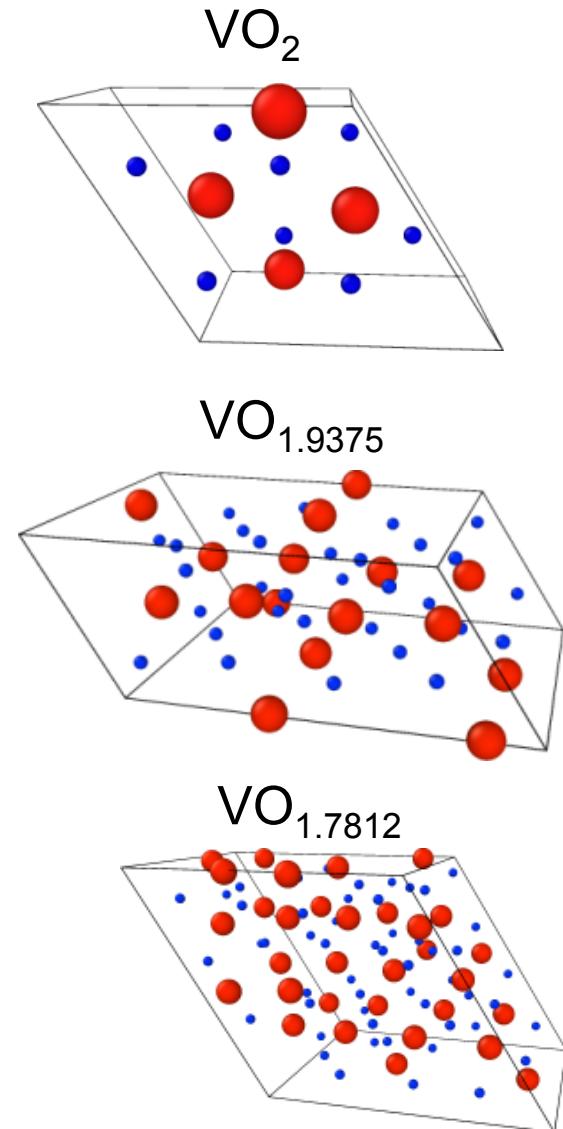
Machine identified features capture defect densities and correlations more accurately than human identified features



Using machine learning to decode diffraction patterns

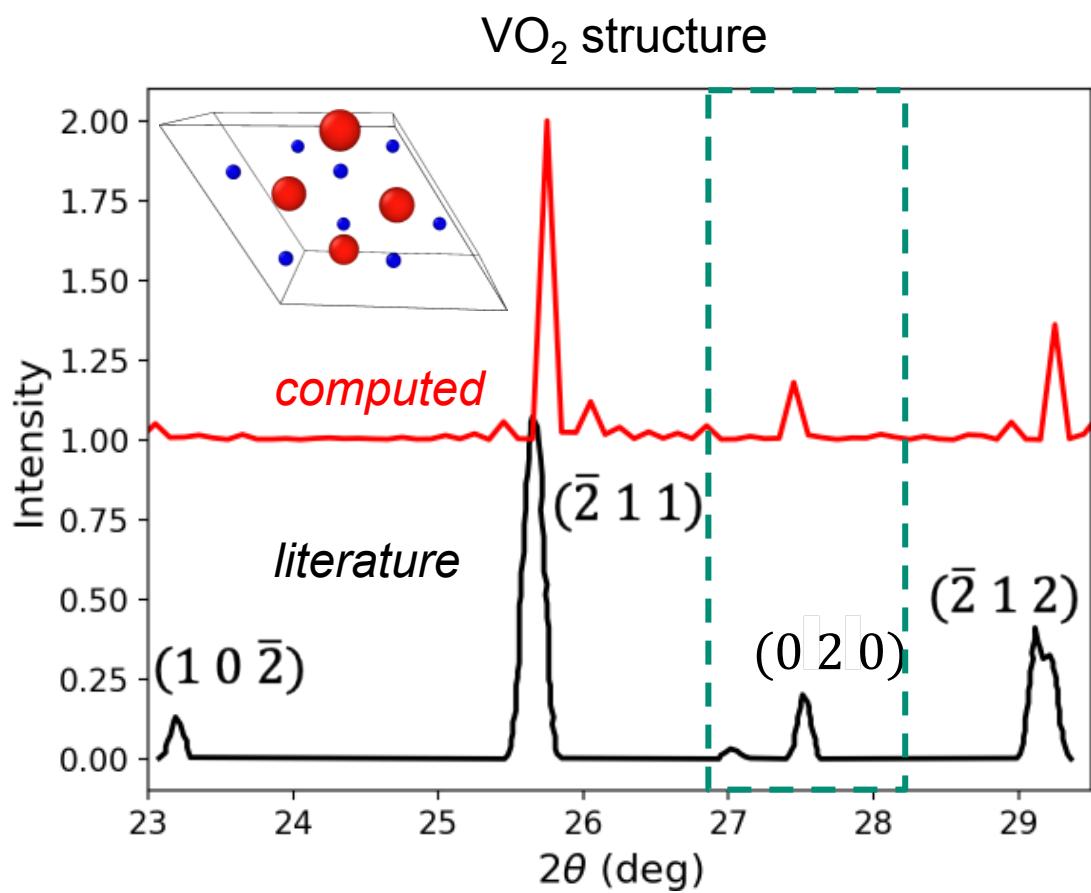


Generating VO_x structures



Machine identified features capture defect densities and correlations more accurately than human identified

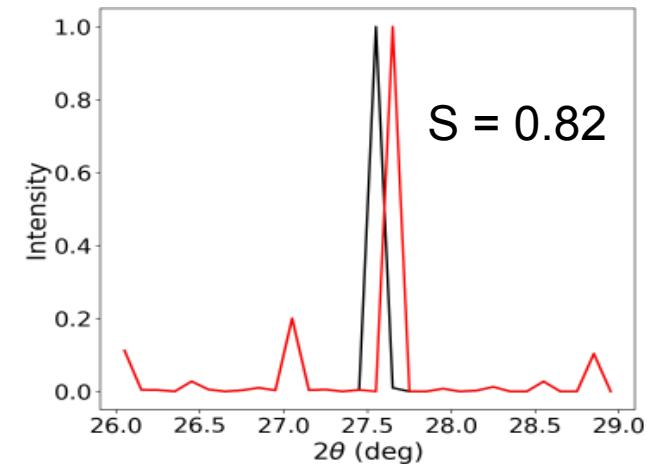
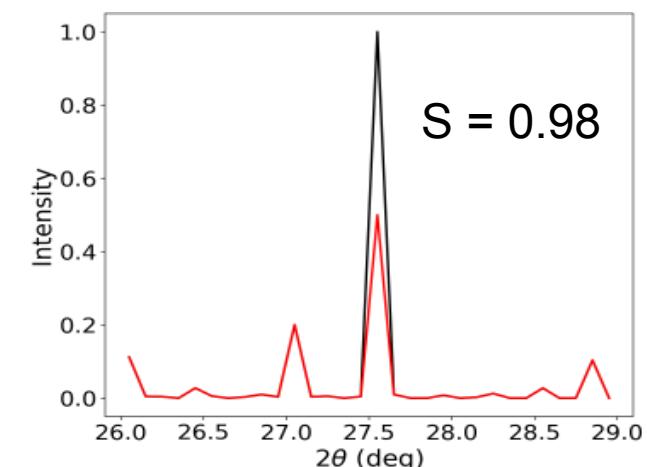
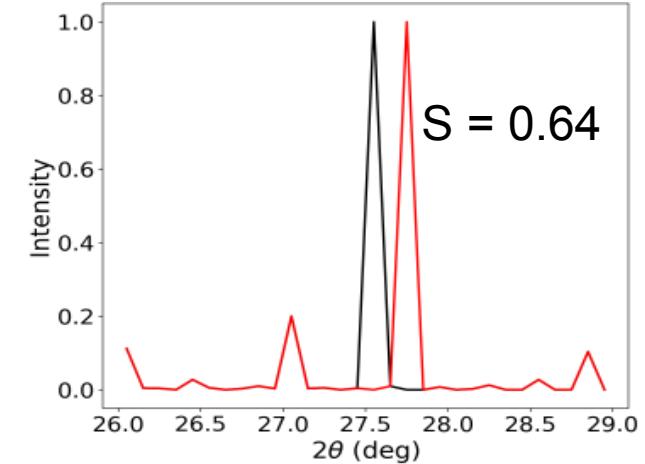
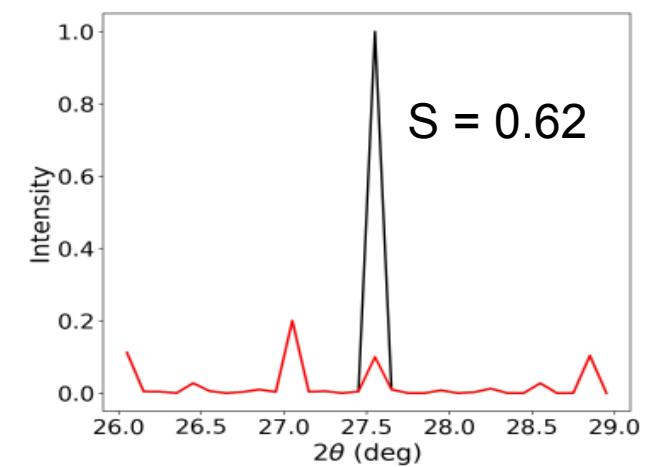
Calibrating XRD calculations



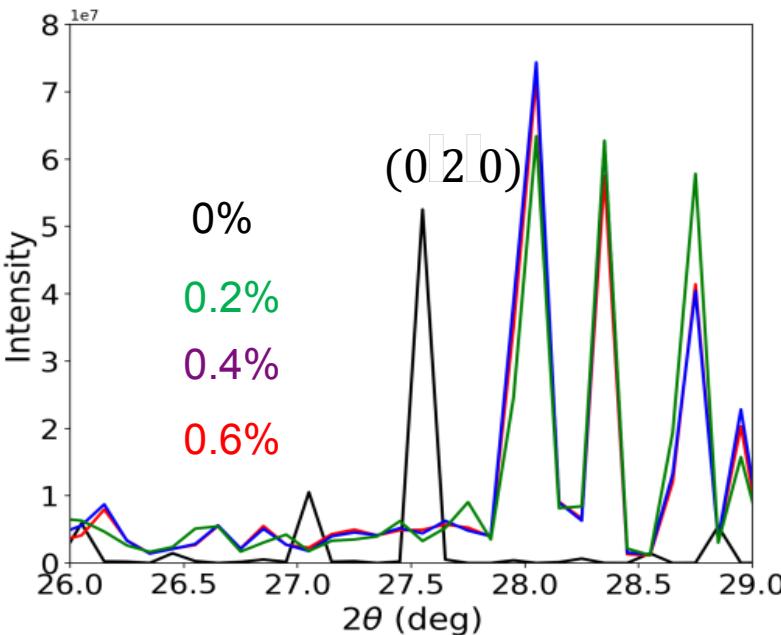
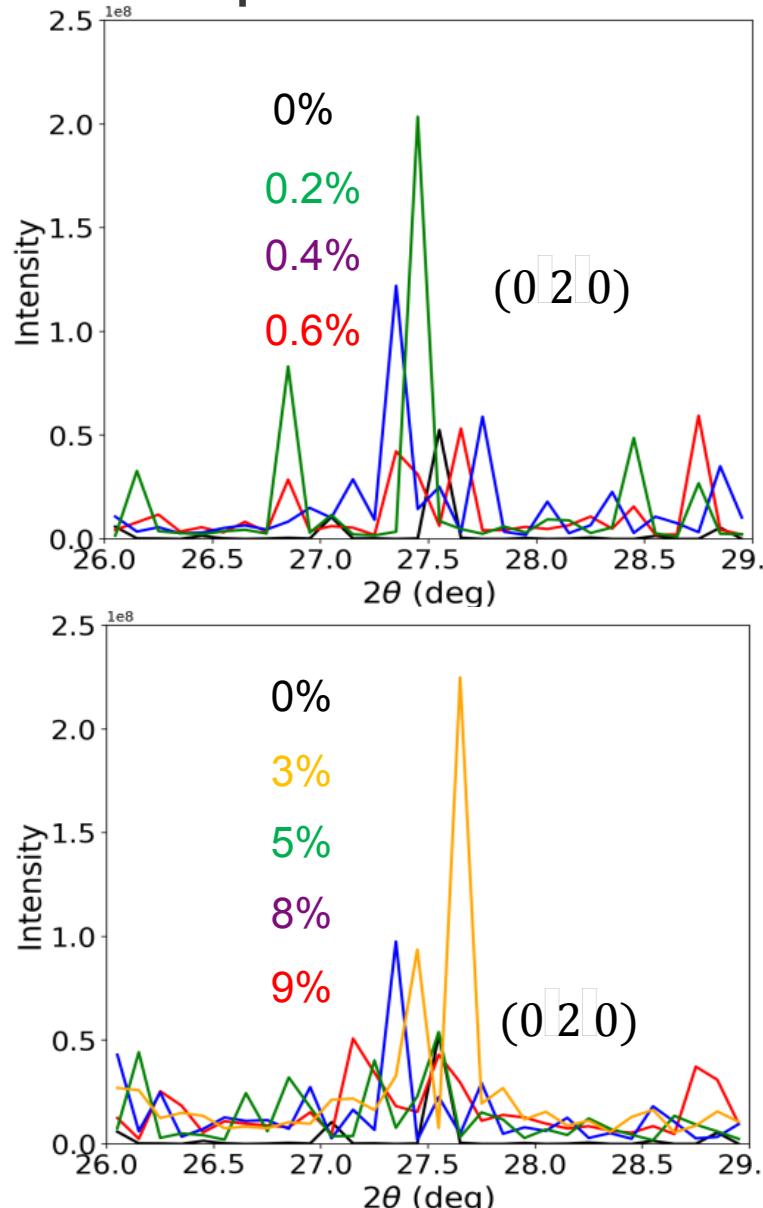
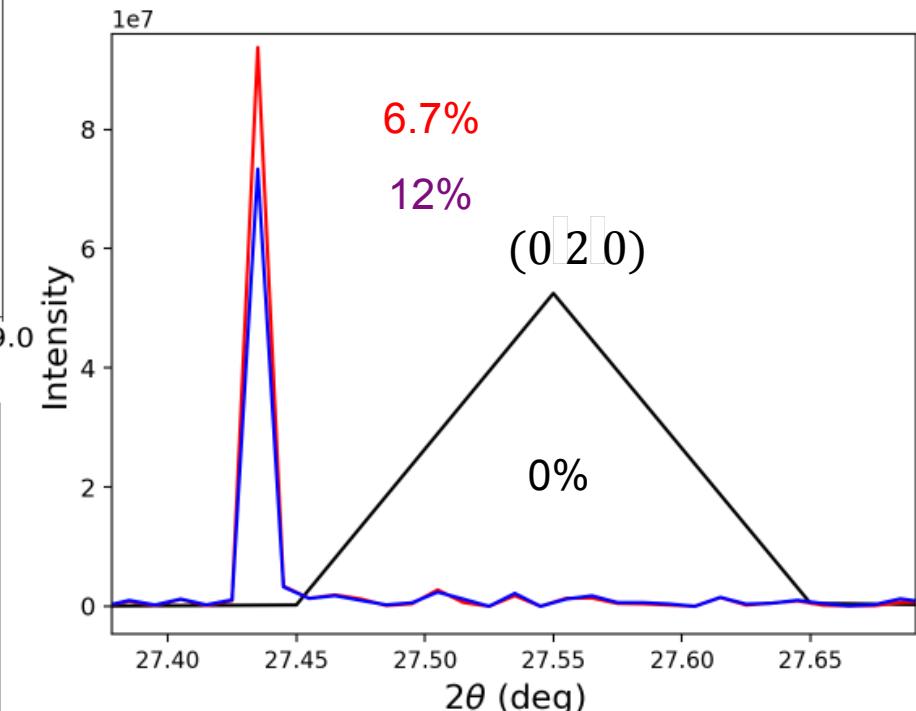
Simulated XRD patterns captures important peak locations accurately

Cross-correlation metric

$$S_{fg} = \frac{\sum_{r=-t}^{r=t} w(r) \sum_{i=1}^n (f_i * g_{i+r})}{\left(\sum_{r=-t}^{r=t} w(r) \sum_{i=1}^n (f_i * f_{i+r}) \right)^{1/2} \left(\sum_{r=-t}^{r=t} w(r) \sum_{i=1}^n (g_i * g_{i+r}) \right)^{1/2}}$$

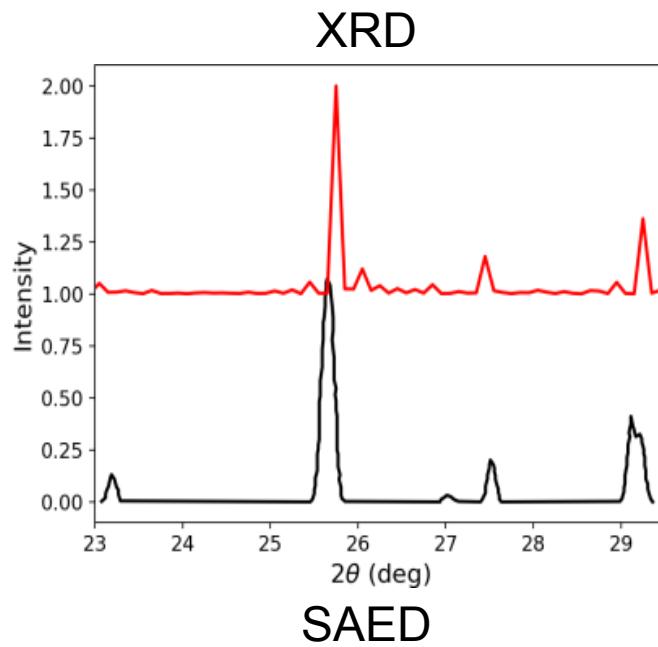
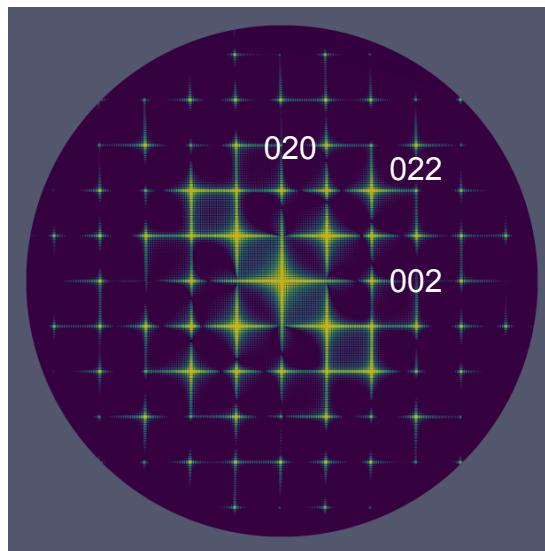


Decoding VO_x diffraction patterns

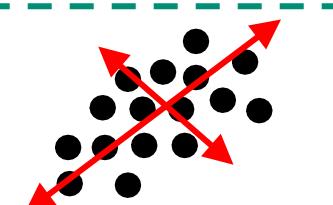


High similarity score structures do not give a consistent trend

Path forward

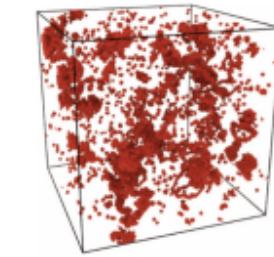


Multimodal data as inputs to ML models



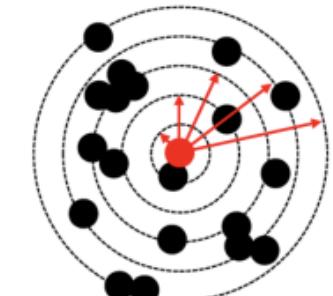
PCA/NNMF of diffractogram

Gaussian Process Regression



Point defect density

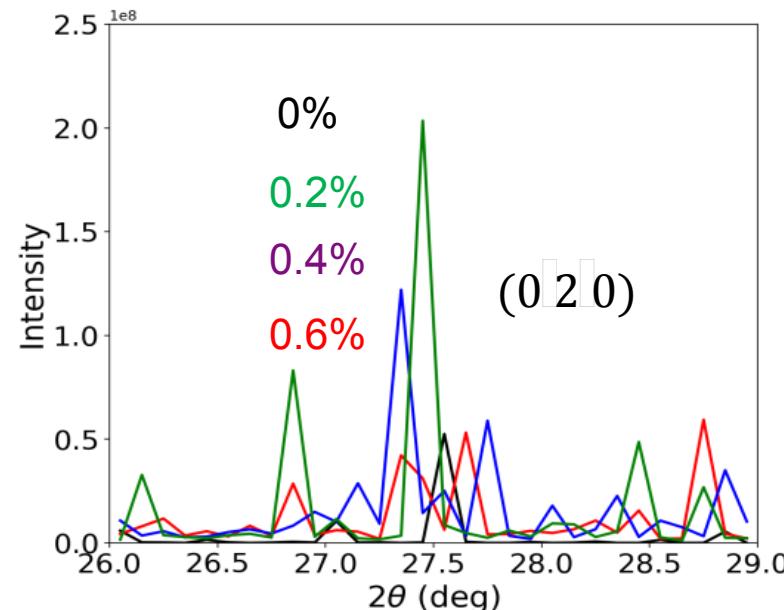
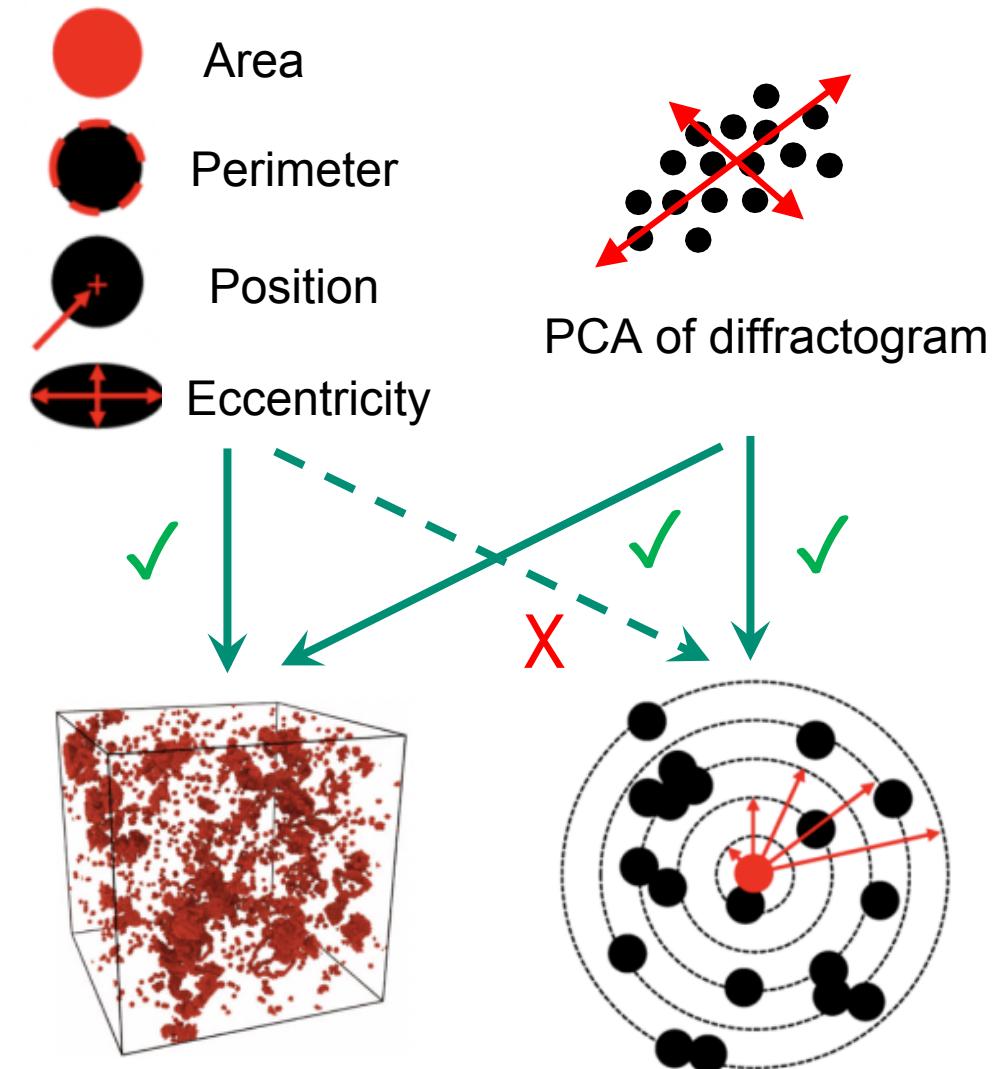
Gaussian Process Regression



Pair correlation function

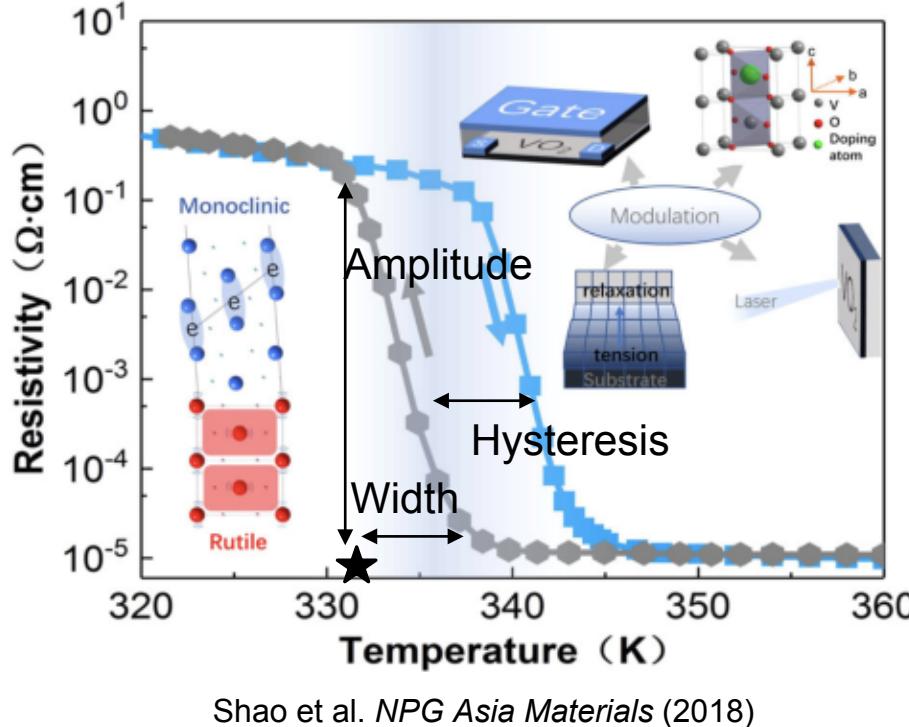
Take home message

- Correlating observable diffraction patterns to underlying vacancy statistics is critical to controlling metal to insulator transition
- Machine learning based approaches can extract more information from a diffractogram than human-intuition

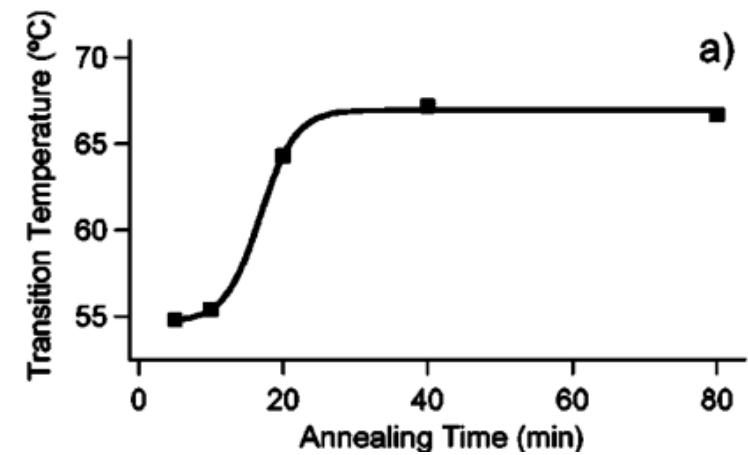


Backup slides

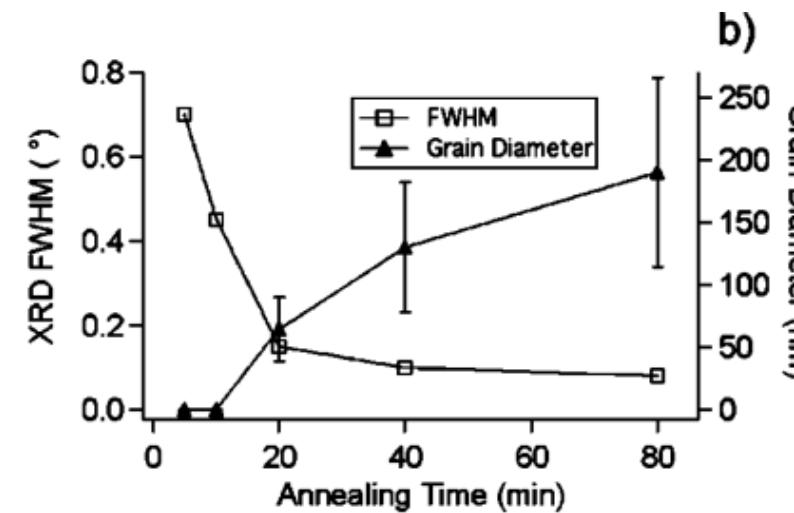
Controlling the metal to insulator transition in VO_x



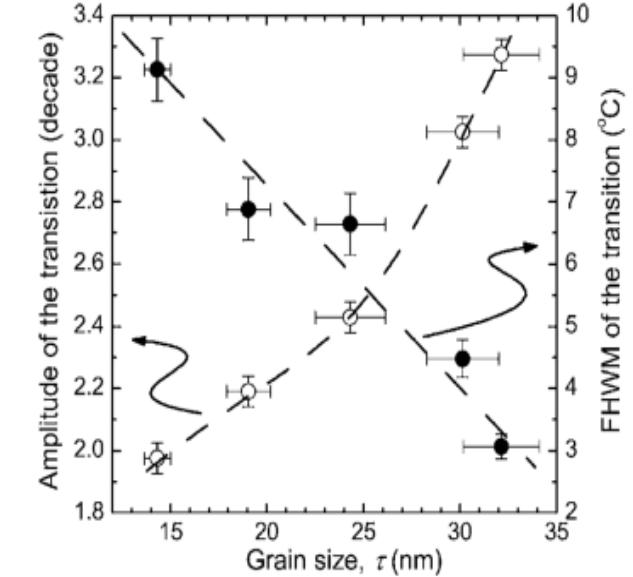
Width \propto defect concentration
 Amplitude \propto 1/defect concentration
 Hysteresis \propto interfacial energy



Suh et al. *Journal of Applied Physics* (2004)

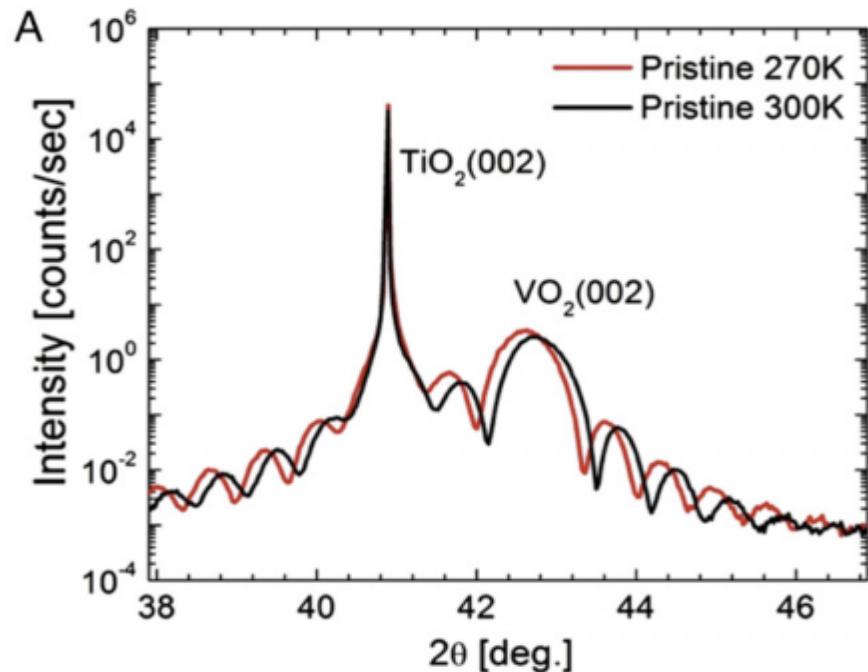


Narayan and Bhosle *Journal of Applied Physics* (2006)

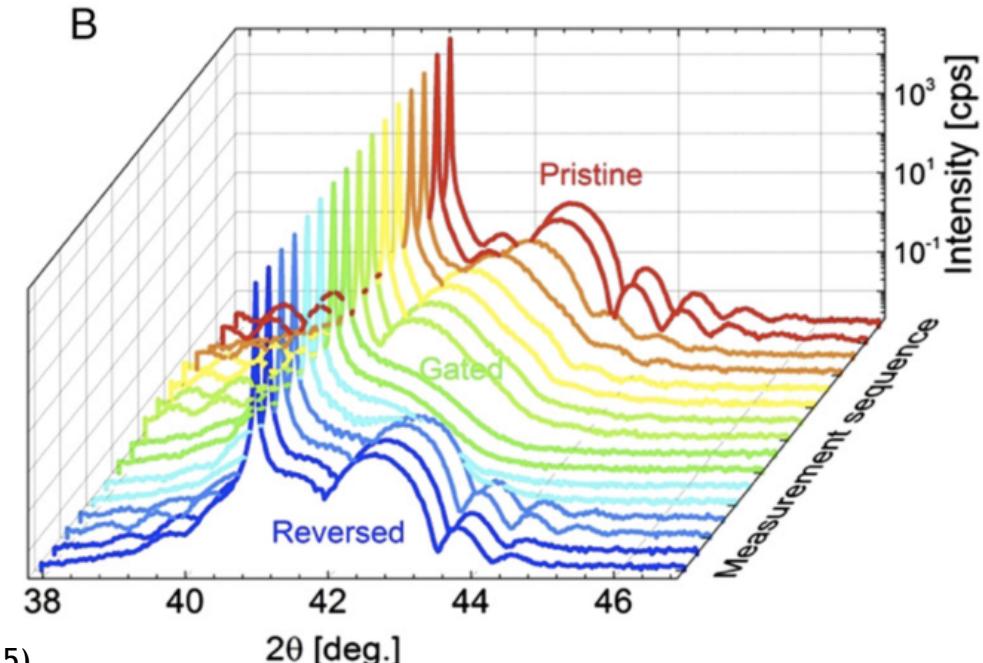
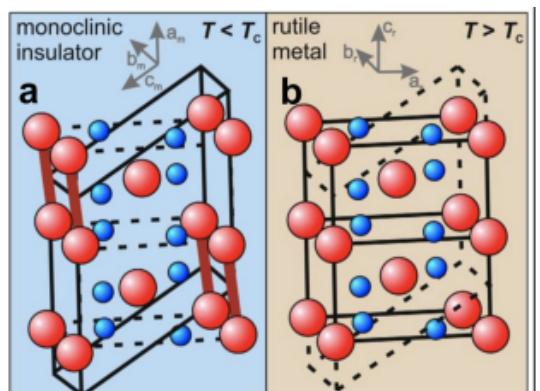


Brassard et al. *Applied Physics Letters* (2005)

Vacancy induced metallization



Jeong et al. PNAS (2015)



Near neighbor distances [Å]		
Atom pair	Pristine	Gated
V-O	1.86	1.95
V-O	2.06	
V-V(intra dimer)	2.61	2.94
V-V(inter dimer)	3.03	3.16
V-V	3.49	3.53

- (002) peak shifts right for monoclinic to rutile transformation
- (002) peak shifts left on gating
- Oxygen vacancies induce metallization in the monoclinic state while expanding lattice