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2 ‘ Metal to insulator transition in VO,
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» VO, transforms from a metal to an insulator at 68°C

» Coincides with monoclinic to tetragonal
transformation

» Applications: Smart window coatings, holographic
memory, thermal IR imaging



https://www.nist.gov/blogs/taking-measure/smart-window-sustainable-development-scientists-story

3 ‘ Controlling the metal to insulator transition in VOx
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4 ‘ Vacancy induced suppression of MIT

Jeong et al. PNAS (2015)
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5 ‘ Decoding diffractograms to extract defect statistics
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6 ‘ Using machine learning to decode diffraction patterns
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7 ‘ Using machine learning to decode diffraction patterns
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8 ‘ Using machine learning to decode diffraction patterns
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o I Generating VO, structures

Monte Carlo Tree Search
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Machine identified features capture defect densities and correlations more accurately than human identified
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Calibrating XRD calculations
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Decoding VO, diffraction patterns
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2 I Path forward
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13 1 Take home message

> Correlating observable diffraction patterns to underlying . Area
vacancy statistics is critical to controlling metal to . Perimeter
insulator transition
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15 ‘ Controlling the metal to insulator transition in VOXx
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16 ‘ Vacancy induced metallization
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