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2 ‘ How do we design thin films tailored for specific

nnlications?

C A &
v~ vV

3% 1%
Cold Day Hot Day

SIOOPU|

SJ00pu|

MOPUIM JIRWS

MOPULM LIRS

Wisible and
near4infrared
q I solar radiation ’

Wisible and
near-infrared
solar radiation

X

Yisible and Har - T:::le
near-infrared infrared radiation
solar radiation solar

radiation

Source: certechinc.com

Source: nist.qgov

Designing tailor-made thin films
requires an understanding of
processing-structure-property linkage

Structure zone diagrams relate
processing conditions to microstructure
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3 ‘ Microstructure formation in metallic alloy thin films

Binary metallic alloy microstructures governed by spinodal decomposition
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Evolution equations
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‘ Phase field model simulates microstructure evolution for various deposition conditions ‘




4 ‘ Microstructures using constant deposition conditions

Deposition rate = 0.075

Deposition rate = 0.5
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‘ Competition between deposition/diffusion gives different microstructures‘
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We use a genetic algorithm to discover time-dependent protocols that result in desired microstructure‘




6 ‘ Coupling genetic algorithms to alloy deposition
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» Low deposition/high diffusion rates lead to lateral concentration modulations
» High deposition/low diffusion rates lead to vertical concentration modulations

» Structure zone diagram agrees with previous phase field models and experiments



Discovering time-dependent protocols
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9 ‘ Discovering time-dependent protocols

Vertical concentration modulation (VCM)
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10 ‘ Understanding the choices of the genetic algorithm
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» GA favors low amplitudes to generate LCM structures and high amplitudes for VCM structures
» Range of deposition rates can be used to get hierarchical structures

» Genetic algorithm learns deposition-diffusion trade offs
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Optimizing the deposition rate and the mobility

Search space: pulsed
deposition rates and

step function mobilities  g*

Genetic algorithm parameters: A, T, f = F,a,b, g
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Favoring simple protocols
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Take home message

» Coupled genetic algorithm to phase field simulations
to achieve targeted thin film microstructures

» GA achieves target microstructures for constant
deposition scenarios
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» GA discovers time-dependent deposition rates to 3 \
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15 ‘ How do we design thin films tailored for specific
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Designing tailor-made thin films
requires an understanding of
processing-structure-property linkage



https://www.nist.gov/blogs/taking-measure/smart-window-sustainable-development-scientists-story
https://www.energy.gov/eere/solar/perovskite-solar-cells
https://www.certechinc.com/product/boron-carbide-b4c-thin-film-wear-resistant-coating/

16 ‘ Microstructure formation in metallic alloy thin films

‘ What processing conditions to use to obtain desired film microstructure?
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‘ Phase field simulations ‘

Spinodal decomposition results in spontaneous concentration modulations
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https://en.wikipedia.org/wiki/Spinodal_decomposition

17 ‘ Structure-property-processing relationships in thin films
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18 ‘ High dimensional structure zone diagrams
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ML methods can give high dimensional SZDs




‘ Workflow
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Phase-field Alloy Deposition

/\/\/—b Complexity = ZIP;;H Pl

n
Fitness (F) = Z |wi (affrecture — @, *T90)| + p(Complexity)

1
___:—":'" time = TJ" I
a, | by | ¢y | dy I e Job :
| >
az | bz | ¢z | dz ! ! array 1
1 __’_ P = f{t; az, bz; Ca, dz) 1
1 : time =T, 1
| |
lb“l"l. n d‘ﬂ. - - -
on < I ' Phase-field input file 1
population I s 1
1 i P e el e
[ "o,
T I Repeat until *
A desired i
@ | byl e ldy || 1% microstructure ;
| %, is achieved Protocol Analysis
a, | by | cp | dy I, K
: ! *‘-....l‘,-" | I
selection : : 2-p0int [a . . ]:
G| baen|dn]l I correlation < A s 2 == |
mutation 1 I ) Principal I
| I Microstructure Component |
T : Ip comparison Analysis !
| ]
) I 7 I
AF rejected I Complexity evaluation |
selected| 1 [ I
1 1 I
| | ]
1 | I
1 I I
e ! .
1 1 I

Accuracy

Complexity



20 ‘ Structure-property-processing relationships in thin films
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Thin film structure decides properties
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21 I Microstructures from simple time-dependent protocols
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2 I Optimizing the deposition rate and the mobility
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3 ‘ Phase field simulations of alloy deposition
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Phase field model simulates microstructure evolution for various deposition conditionsl !




4 ‘ Microstructures using constant deposition conditions

Deposition rate = 0.075
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