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Grain boundaries (GBs) are one of the most common
crystal defects in polycrystalline materials

George et al., Nat.
Rev. Mater. 2019

GBs can interact with foreign atoms (red
below) and results in GB segregation
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Background

Segregation has been broadly studied for many GB structures in different materials

Clean Monolayer Bilayer Trilayer Nanolayer Wetting
) :
. Luo et al.,
- f‘;:.' Science 2011
Periodic monolayer segregation of Ordered superstructure in Bi bilayer superstructure in Ni

solute atoms in Mg TB MgO 23 GB Polycrystals

Nie et al., Science 2013 Wang et al., Nature 2011 Yu et al., Science 2018

However, experiments are complicate and time consuming. Only few thermodynamic
conditions (at certain temperature and composition) were studied




Background

Develop grain boundary diagrams is one of effective methods to study
segregation as a function of temperature and composition
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However, most of these GB diagrams are developed for binary
alloys with one compositional degrees of freedom



Motivation and Method

High-entropy alloys (HEAs) generally has five or more
elements, leading to a large compositional space

Using CrMnFeCoNi (Cantor alloy) as model system to
compute GB diagrams for HEAs

Applied hybrid Monte Carlo/molecular dynamic (MC/MD)
simulations to develop large datasets for 258 different
compositions at 4 different temperatures

At each condition, we compute five GB adsorption
properties and disorder for an asymmetric 281 GB
(represent a general GB)

The large GB dataset was used to train several machine
learning models

A physics-informed data-based model was developed to
predict GB properties of HEAs
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GB Structure of CrMnFeCoNi
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Workflow of Data-Driven Prediction of GB Properties of HEAs

High-Entropy Alloys
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Machine Learning Grain Boundary Diagrams
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Machine Learning Prediction of Grain Boundary Diagrams e lemyﬂ—

 Artificial neural network (ANN) is the most accurate
model to predict GB properties among four machine
learning models

* ANN-predicted GB adsorption has good agreement
with MC/MD simulations

* Forinstance, ANN-predicted Cr adsorption diagram
in Cry 4, Mn,Fe, ,Co, ,Nij , is consistent with MC/MD

simulations

 ANN models are more effective to predict ternary
GB diagrams
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Correlation Analysis for GB Properties ) = @ i3 ptamos

« GB segregation trend: I, > Iy, > 0> Iy; > Ico~ Ire (Cr and Mn: segregation, Co and Fe: GB depletion)

» GB excess of disorder (I;.) has strong positive correlation with Cr (I-,.) and Mn (I3, ), but negative
correlation with Co (I,) and Fe (Ize)
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Compensation Effect of GB Segregation in HEAs =}

« By fitting all 1032 data points, the slope (ﬁg{s) of I', vs I decreases as a function of temperature.

—Cr —Mn thi - —~Fe —Co th i :
* dap;, and ap;, decrease with increasing temperature, ap;. and ag;, increase with increasing temperature

- If we calculate af} values and plot it as a function of temperature for all five elements, five lines cross

1s

over at a same point, where temperature is around 1388 K (called compensation temperature T,)
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Physics-Informed Data-Driven Model (PIDDM) ) hodames

PIDDM model expression:

Disorder contribution Compositional contribution

A A
[ \

FUT,X) = 6, (T = To) - [Si02 - X)) exp (~ 2 D,s]+z,(xseg X))

Seg Seg Seg Seg Seg PIDDM ANN
i= Tc ﬁ i K; cr xi,Hn xi,Fe K:_cg K; ni Prediction Prediction
(K) (K1 RMSE RMSE
(atom/nm?) (nm) (nm?)
Cr 1347 -0.0109 32 -47 13 | -17 7.4 3.0
Mn 1464 -0.0014 1 -3 8 3 1 1.2 0.6
Fe 1370  +0.0075 -13 26 -26 14 14 5.3 1.9
Co 1371 +0.0046 -15 27 4 -17 12 3.8 1.6
Ni ~(0 -6.4 -3.7 1.2 -0.5 -7.1 0.88 0.7
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Physics-Informed Data-Driven Model (PIDDM) @;m 1 Q—“ ok ntmes

« Based on PIDDM model, we can predict disorder contribution to GB segregation (see Fig. A below), which
around 70% for Cr, Fe, and Co.

 The compensation temperature can be ascribed to enthalpy-entropy compensation
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Comparison of PIDDM model vs. Other Segregation Models

 If calculate Cr segregation as a function of Cr bulk composition in 1000 K based on regular solution model,
the segregation trends: Cr,Fe,, > Cr,Co,_ > Cr,Ni,, > CrMn,_

 Compared to MC/MD simulations, segregation trends are almost reversed. This means regular solution
model is not sufficient to predict segregation in HEAs,
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Conclusion [, |

 We construct a data-driven framework to

predict HEA GB properties as a function of 4 GB Diagrams

composition and temperature in 5-D space Degree of Disorder 4 ._
= - o
* ANN is the most accurate model to predict 45 .
GB properties
A novel PIDDM has been developed. o w
Compared to ML model, it has physical ™ o9 9,',@
meaning and can be potentially used for other y 1 QZG:Q;OEDE’
systems ob S S >12020%0 00 00
280270 e

* Some new physics of GB segregation in HEA
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Predict GB Properties for

have been discovered o® < Cry,Mng,Fe, Co Ni, High-Entropy Alloys in a 5D Space
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