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Modeling quantum processors
 We create models of quantum processors in order to:

 Predict their behavior and performance
 Understand how they deviate from the ideal

 Model = anything that makes predictions.
 Opaque model – a black box that predicts individual/avg outcomes
 Transparent model -- can look inside the model and gain insight from 

values/parameters

 Common model = process matrix for every gate
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Gauge freedom in models
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Predictions vs. data
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 But there’s a problem!  Gauge transformations change all the the process 
matrices but none of the predictions!
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transformations

Insight based on 
gauge-variant 
quantities is flawed!



 First order gauge invariant (FOGI) directions = a first step toward gauge invariant 
models & metrics.

 Linearize about a the ideal (error free) model in parameter space:

 Goal of this work: how do we find these FOGI directions?
 First step: choose coordinates to use

FOGI directions
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FOGI directionFOGI direction

gauge directiongauge direction
(to 1(to 1stst order) order)

gauge 

tranformations

Ideal model

For small errors, 
parameter space can be 
neatly separated:



Error generators instead of process matrices
Gates are parameterized by error rates:
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Different types of 
elementary error 
generators

(arXiv:2103.01928)
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Coefficients = coordinates we work in.



Gauge transformations
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FOGI directionFOGI direction

1st order1st order
gauge trans.gauge trans.

Assuming small errors, 
using elementary error 
generator coordinates.
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Gauge transformations at 1st order
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Gauge transformation
on process matrices 

(nonlinear)
Write using error & gauge generators

Gauge transformation on error 
generators (linear!)

FOGI directionFOGI direction



FOGI directions
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We’re done!
We’ve found a basis for the FOGI space!



Constructing a nice FOGI space basis
 We’d like to find a nice basis, where elements have minimal support.

 Additional work (see arxiv paper) shows how to construct a basis 
composed of:
 intrinsic FOGI directions: support on a single gate
 relational FOGI directions: support on a pair or limited subset of gates.

 Presents gate set error as a graph
      that attributes error to one or more
      nodes (gates).
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[Nature 601, 348 (2022)]



1-qubit example
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Intrinsic
FOGI  directions

Over-rotation angle
On-axis stochastic error

Total off-axis stochastic error

Relational
FOGI  directions

FOGI construction: 12 = 7 FOGI + 5 gauge parameters



Summary
 Gauge degrees of freedom make model-based characterization difficult.

 First-order gauge-invariant (FOGI) directions partially solve this problem:
 Assumes small errors and gauge transformations
 Applies linear algebra to separate (first-order) gauge from gauge-invariant directions.

 Procedure exists for constructing a nice basis for FOGI space.
 View a gate set’s errors as a mix of intrinsic (attributed to a single gate) and relational 

(quantifies a relationship between gates) errors that are 1st-order insensitive to gauge 
transforms.
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