

First-order gauge-invariant error rates in quantum processors.

Erik Nielsen¹

Kevin Young¹, Robin Blume-Kohout¹

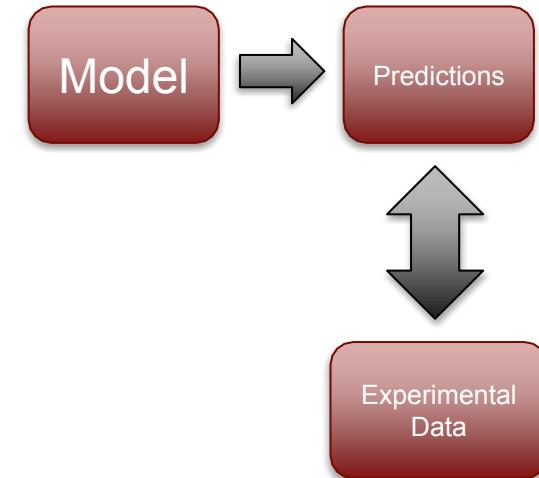
¹(Quantum performance laboratory, Sandia National Laboratories)

APS March Meeting 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories

Modeling quantum processors

- We create models of quantum processors in order to:
 - Predict their behavior and performance
 - Understand how they deviate from the ideal
- Model = anything that makes predictions.
 - Opaque model – a black box that predicts individual/avg outcomes
 - Transparent model -- can look inside the model and gain insight from values/parameters
 - Common model = process matrix for every gate



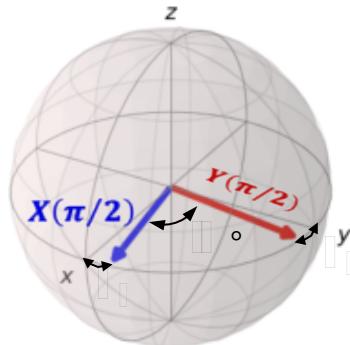
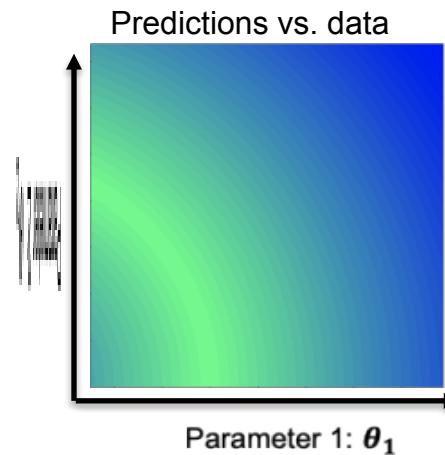
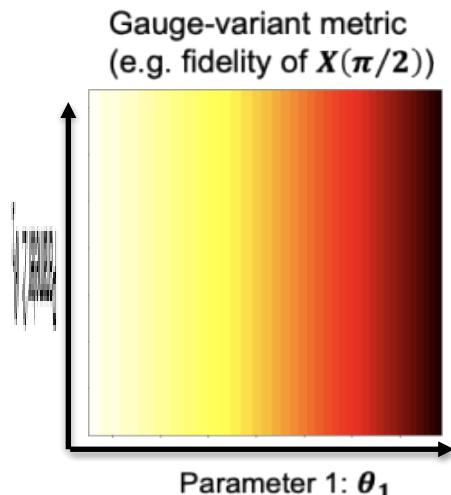
Gauge freedom in models

- **But there's a problem!** *Gauge transformations* change all the process matrices but none of the predictions!

Example:

Gate set = $\{X(\pi/2), Y(\pi/2)\}$

Perfect except angle between rotation axes is **80° instead of 90°**



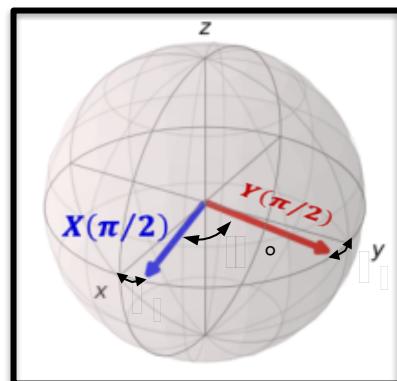
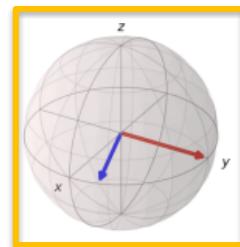
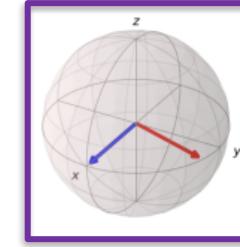
Gauge freedom in models

- But there's a problem! *Gauge transformations* change all the process matrices but none of the predictions!

Example:

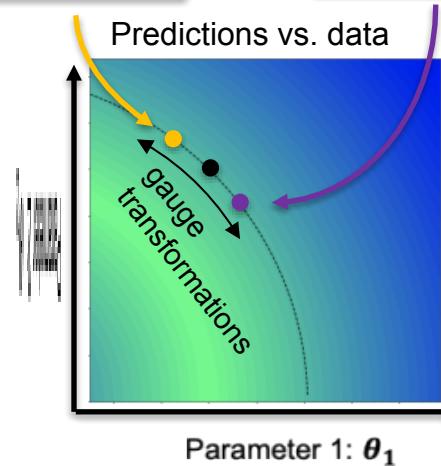
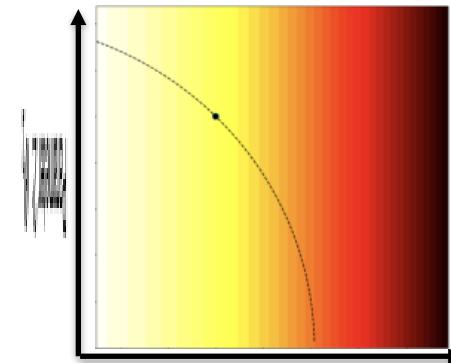
Gate set = $\{X(\pi/2), Y(\pi/2)\}$

Perfect except angle between rotation axes is 80° instead of 90°



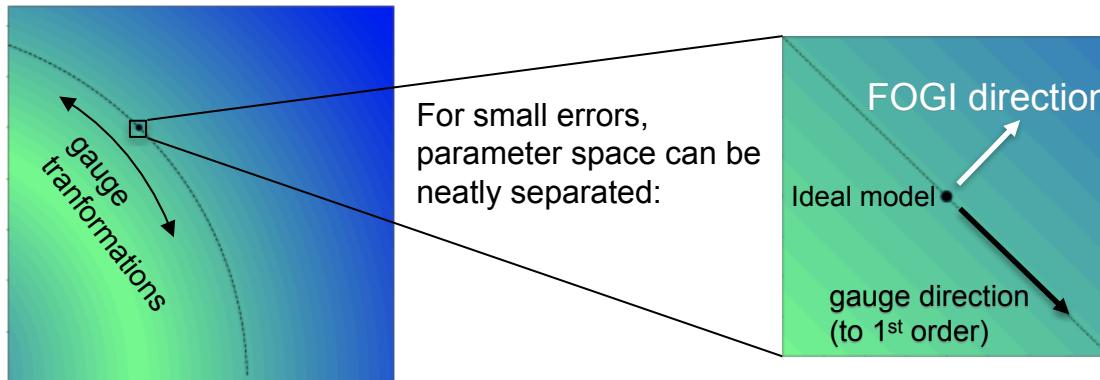
Insight based on gauge-variant quantities is flawed!

Gauge-variant metric (e.g. fidelity of $X(\pi/2)$)



FOGI directions

- **First order gauge invariant (FOGI) directions** = a first step toward gauge invariant models & metrics.
- Linearize about a the ideal (error free) model in parameter space:



- **Goal of this work: how do we find these FOGI directions?**
- First step: choose coordinates to use

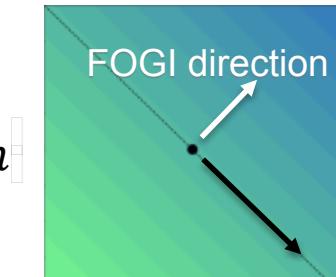
Error generators instead of process matrices

Gates are parameterized by error rates:

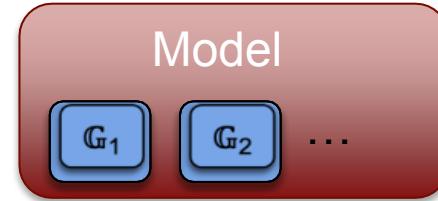
$$\text{Gate } \mathbb{G} \text{ superoperator} = e^{L_{\mathbb{G}}} \text{ Ideal gate superoperator}$$

error generator

$$L_{\mathbb{G}} = \sum_P h_P^{\mathbb{G}} H_P + \sum_P s_P^{\mathbb{G}} S_P + \sum_{P,Q} c_{P,Q}^{\mathbb{G}} C_{P,Q} + \sum_{P,Q} a_{P,Q}^{\mathbb{G}} A_{P,Q}$$



Coefficients = **coordinates** we work in.



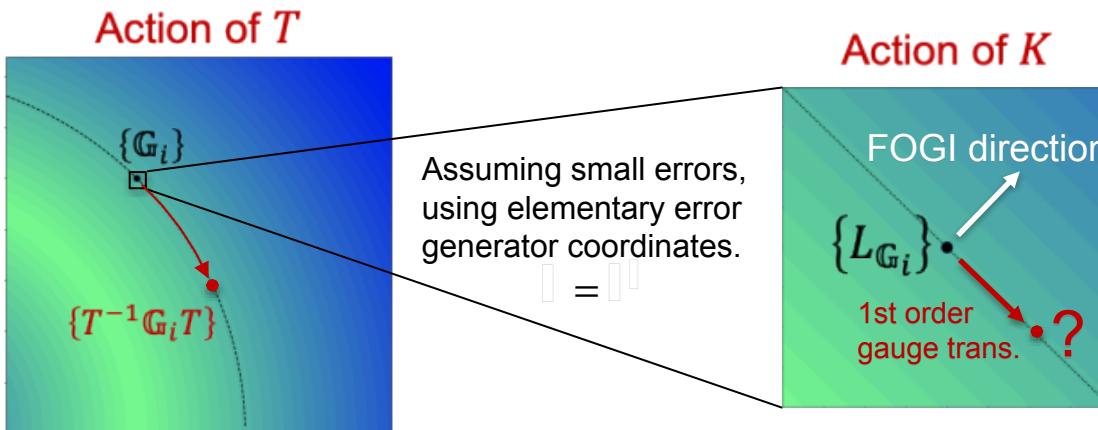
Sector	Dimension	Action	Example effect (Bloch sphere)
Hamiltonian	\mathbb{H}	$H_P[\rho] = -i[P, \rho]$	
Stochastic (Pauli)	\mathbb{S}	$S_P[\rho] = P\rho P - \mathbb{1}\rho\mathbb{1}$	
Stochastic (Pauli-correlation)	$\begin{cases} \{P,Q\}=0 \\ [P,Q]=0 \end{cases}$	$C_{P,Q}[\rho] = P\rho Q + Q\rho P - \frac{1}{2} \{\{P,Q\}, \rho\}$	
Active	$\begin{cases} \{P,Q\}=0 \\ [P,Q]=0 \end{cases}$	$A_{P,Q}[\rho] = i \left(P\rho Q - Q\rho P + \frac{1}{2} \{[P,Q], \rho\} \right)$	

(arXiv:2103.01928)

Gauge transformations

- **Step 1:** coordinates = elementary error generator coefficients ✓
- **Step 2:** figure out what gauge transformations do within this space.
 - We know what they do to process matrices:

gauge transformation T takes process matrices $\mathbb{G} \rightarrow T^{-1}\mathbb{G}T$



Gauge transformations at 1st order

Gauge transformation
on process matrices
(**nonlinear**)

$$\mathbb{G} \rightarrow T^{-1} \mathbb{G} T$$

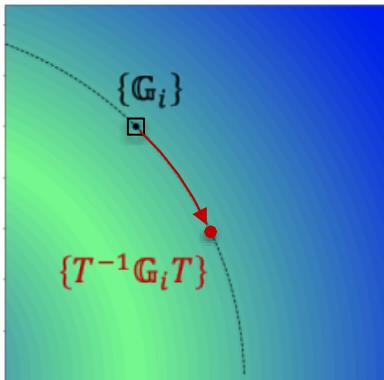
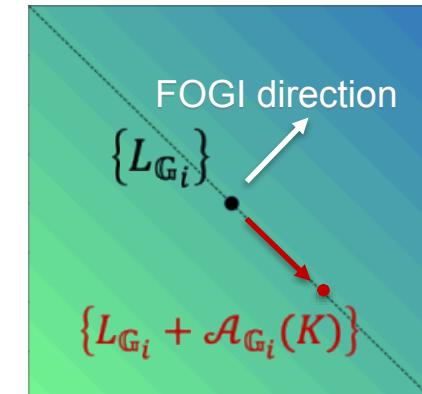
Write using error & gauge generators

$$T = e^K$$
$$\mathbb{G} = e^{L_{\mathbb{G}}} \mathbb{U}$$

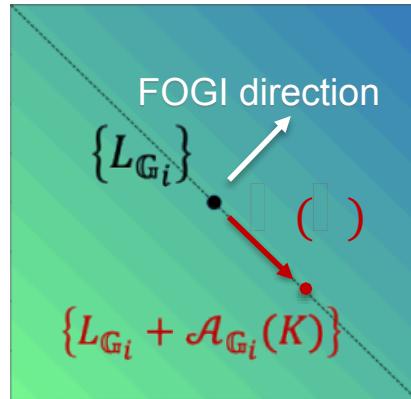
linearize
(assume K
and $L_{\mathbb{G}}$ are
small)

Gauge transformation on error
generators (**linear!**)

$$L_{\mathbb{G}} \rightarrow L_{\mathbb{G}} + \underbrace{(\mathbb{U} K \mathbb{U}^{-1} - K)}_{\mathcal{A}_{\mathbb{G}_i}(K)}$$



FOGI directions



- 1st order gauge direction for gauge generator $K = \mathcal{A}(K)$
- All 1st order gauge directions = $\text{range}(\mathcal{A})$
- All FOGI directions = $\overline{\text{range}(\mathcal{A})}$ (complement of range)

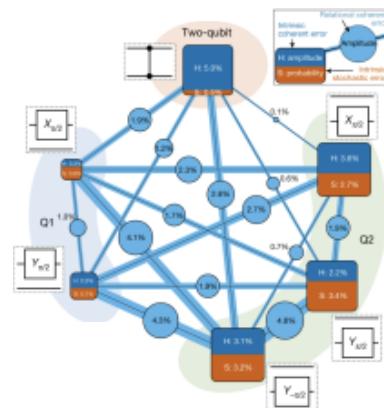
$$\begin{bmatrix} L_{G_1} \\ L_{G_2} \\ \vdots \end{bmatrix} \rightarrow \begin{bmatrix} L_{G_1} \\ L_{G_2} \\ \vdots \end{bmatrix} + \begin{bmatrix} \mathcal{A}_{G_1} \\ \mathcal{A}_{G_2} \\ \vdots \end{bmatrix} K$$

$\square \square \square \square \rightarrow \square \square \square \square + \square \square \quad (\square)$

We're done!
We've found a basis for the FOGI space!

Constructing a *nice* FOGL space basis

- We'd like to find a *nice* basis, where elements have minimal support.
- Additional work (see arxiv paper) shows how to construct a basis composed of:
 - *intrinsic* FOGI directions: support on a single gate
 - *relational* FOGI directions: support on a pair or limited subset of gates.
- Presents gate set error as a graph that attributes error to one or more nodes (gates).



[Nature 601, 348 (2022)]

1-qubit example

- Gate set = $\{X(\pi/2), Y(\pi/2), \rho_0, M\}$
- Each gate has 6 parameters; model has **12 parameters total**.
 - 3 Hamiltonian: h_X^G, h_Y^G, h_Z^G
 - 3 Pauli Stochastic: s_X^G, s_Y^G, s_Z^G

FOGI construction: $12 = 7$ FOGI + 5 gauge parameters

Intrinsic
FOGI directions

1. $h_X^{X(\pi/2)}$
2. $s_X^{X(\pi/2)}$
3. $(s_Y^{X(\pi/2)} + s_Z^{X(\pi/2)})$

Relational
FOGI directions

$$7. (h_Y^{X(\pi/2)} - h_Z^{X(\pi/2)}) - (h_X^{Y(\pi/2)} - h_Z^{Y(\pi/2)})$$

Over-rotation angle
On-axis stochastic error
Total off-axis stochastic error

4. $h_Y^{Y(\pi/2)}$
5. $s_Y^{Y(\pi/2)}$
6. $(s_X^{Y(\pi/2)} + s_Z^{Y(\pi/2)})$

Summary

- Gauge degrees of freedom make model-based characterization difficult.
- First-order gauge-invariant (FOGI) directions partially solve this problem:
 - Assumes **small errors** and gauge transformations
 - Applies linear algebra to separate (first-order) gauge from gauge-invariant directions.
- Procedure exists for constructing a nice basis for FOGI space.
 - View a gate set's errors as a mix of **intrinsic** (attributed to a single gate) and **relational** (quantifies a relationship between gates) errors that are 1st-order insensitive to gauge transforms.