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Approach

Materials that diffuse hydrogen slowly are useful for storing * Feature selection: 196 total features
hydrogen. Conversely, materials that diffuse hydrogen quickly * Previous researchers [1] have used the Wolverton group MAGPIE features database [3] to predict vacancy-

are important for use in hydrogen fuel cells. based diffusion in metals. This database includes a variety of characteristics such as atomic data, crystal
Hydrogen’s small mass results in intrinsically quantum structure, electrical properties, and elastic constants.

mechanical effects, namely a large contribution to diffusion * We further added features from theoretical models of diffusion, which were previously used successfully
from Zero-po]’nt vibrational energy. in a machine learning model for C, O, and B interstitial diffusion in metals [3]

» Electrical thermal conductivity is correlated with the solubility activation energy of hydrogen [4].

Introduction / Motivation

Previously, machine learning models have successfully been

used to predict diffusion in metals [1, 2]. * Model selection: ElasticNET
Most machine learning models are a ‘black box,’ but we want * Linear model which combines properties of LASSO and ridge regression

to enable expert-guided extrapolation beyond our dataset by * Cuts down the number of features and keeps coefficients small
revealing relationships between metal properties and hydrogen * Very similar to normal least-squares linear regression, but is more stable against overfitting

diffusion. « Explainable: coefficients for the features give us an idea of their relative importance

Our findings can therefore be expanded beyond the metals and * Helps us generate a physical understanding for why properties may be important in hydrogen diffusivity
alloys in our dataset.

Current Status/ Results (If any) Challenges Next Steps/ Future Work

« Gathered a database of experimental hydrogen diffusion data, including data collected * Large number of features and Compare predictions from the
at Sandia: Database of Experimental Data s relatively small amount of data model to new experimental/density
+ 50 metals 2 @@ | goss (especially by machine learning functional theory results
- 88 binary random alloys ®aB0 | [[°° standards)
* Contains only high temperature (>300 K) results ®ue 0@@@ 0-4:% Limits th? types of model§ that can Predicted Hydrogen Diffusion in Pd
+ All three isotopes of hydrogen included Ba® a® 225 be used since S more flexible and Binary Alloys
o . accurate models learn ‘too well’, I
@.%@ | - so they can’t generalize to new 0.5 80
3 data 60

* Hydrogen diffusion activation energy predictions for metals and binary alloys
* Fit two separate models for BCC and close-packed metals as BCC metals have more

: - Hydrogen-metal interactions are
prominent quantum mechanical effects pcc activation Energies Close-Packed Activation Energies yarogen -
3 = more difficult to predict due to

their highly quantum-mechanical i Zn A Cu
nature. Element A
Previous models, which focused on Expand the model to work with

larger interstitials, cannot simply more complicated random alloys
D.DExper(i}rﬁental?ﬂ;(ﬂ:rtiwatig.nﬁEnergi-eBS{ev]l.ﬂ be appl]ed here- SUCh aS high'entropy alloys
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