
P R E S E N T E D B Y

Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

NASA

Scalability studies of Albany Land Ice:
a performance portable, ice sheet
solver

Je r r y Wa t k i n s , M a x C a r l s o n , C a r o l y n K a o, I r i n a Te z a u r , R a y Tu m i n a r o

SIAM Confe rence on Pa ra l l e l P roces s ing fo r Sc i en t i f i c
Comput ing

SAND

February 25th, 2022

SAND2022-2130CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline2

1) Motivation - Why are we interested in scalability?

2) Albany, Trilinos and Kokkos

3) Linear solver in Albany Land Ice

4) Numerical results

5) Conclusions

Motivation

Why are we interested in scalability?

Motivation4

• “The top priority today is the continued progress to exascale” – DOE Office of Science HPC Initiative

• Current scientific software must adapt to changing HPC architectures

• New scientific software must be designed to mitigate issues from changing HPC architectures

OLCF Summit – IBM POWER9
CPU + NVIDIA V100 GPU

ALCF Aurora (2022, >1 EF) –
Intel Xeon CPU + Intel Xe GPU

OLCF Frontier (2022, >1.5 EF) –
AMD EPYC CPU + AMD GPUs

NERSC Perlmutter (2021) – AMD EPYC CPU + NVIDIA A100 GPU

GPUs in open-science are here, need efficient access to computational power

Albany, Trilinos and Kokkos

What software tools are we using?

Component Examples (package name)

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear solver (NOX)

• Preconditioners (Ifpack2)

• Linear solver (Belos)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Distributed memory linear algebra (Tpetra)

• Shared memory parallelism (Kokkos)

• Many more…

Albany Strategy – finite element codebase in C++6

https://github.com/SNLComputation/Albany / https://github.com/trilinos/Trilinos

Albany is built primarily for Rapid Application
Development from Trilinos Agile Components

https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos

Albany Overview7

Ex: Finite element assembly (FEA)

• Tpetra manages distributed memory linear algebra
(MPI+X)

• Phalanx manages shared memory computations
(X)
• Gather fills element local solution

• Interpolate solution/gradient to quad points

• Evaluate residual/Jacobian

• Scatter fills global residual/Jacobian

New PDEs only require new code for Evaluate

• Leverage existing tools for rapid development

Trilinos Packages

FEA Overview

Memory Model

https://github.com/SNLComputation/Albany / https://github.com/trilinos/Trilinos

Albany provides the “Glue” – connects components

https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos

Phalanx – directed acyclic graph (DAG)8

Advantages:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Extension:

• Performance gain through memoization

Disadvantage:

• Performance loss through fragmentation

DAG Example (memoization)DAG Example

Single CPU

or GPU

DAG provides flexibility; Memoization improves performance

Sacado – automatic differentiation (AD)9

• AD provides exact derivatives - no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, hessian
• Ex: Optimization, sensitivity analysis

• Sacado data types are used for derivative components via class templates
• DFad (most flexible) – size set at run-time

• SLFad (flexible/efficient) – max size set at compile-time

• SFad (most efficient) – size set at compile-time

Fad Type Comparison: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

AD capability allows for advanced analysis while maintaining performance portability

Kokkos – performance portability10

• Kokkos is a C++ library that provides
performance portability across multiple shared
memory computing architectures
• Examples: Multicore CPU, NVIDIA GPU, Intel KNL and

much more…

• Abstract data layouts and hardware features for
optimal performance on current and future
architectures

• Allows researchers to focus on application or
algorithmic development instead of architecture
specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/

Phalanx Evaluator – templated Phalanx node 11

A Phalanx node (evaluator) is constructed as a
C++ class

• Each evaluator is templated on an
evaluation type (e.g. residual, Jacobian)

• The evaluation type is used to determine
the data type (e.g. double, Sacado data
types)

• Kokkos RangePolicy is used to parallelize
over cells over an Execution Space (e.g.
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
• Serial/OpenMP – LayoutRight (row-major)

• CUDA – LayoutLeft (col-major)

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int node=0; node<numNodes; ++node){

Residual(cell,node,0)=0.;

}

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

Template parameters are used to get hardware specific features.

Linear solver in Albany Land Ice

How are we cur rently solving the linear system?

ProSPect – project under SciDAC13

Role: to develop and support a robust and scalable land ice solver based on
the First-Order (FO) Stokes model → Albany Land Ice

Requirements for Albany Land Ice (formerly FELIX):

• First-order Stokes model

• Unstructured meshes

• Scalable, fast and robust

• Verified and validated

• Portable to new architecture machines

• Advanced analysis capabilities: deterministic
inversion, model calibration, uncertainty
quantification, sensitivity analysis

As part of DOE E3SM Earth System Model, solver will provide
actionable predictions of 21st century sea-level change

(including uncertainty bounds).

ProSPect = Probabilistic Sea Level Projections from Ice Sheet and Earth System Models
5 year SciDAC4 project (2017-2022).

https://doe-prospect.github.io/

https://doe-prospect.github.io/

Linear solver in Albany Land Ice14

Problem: Ice sheet meshes are thin with high
aspect ratios

• First, matrix-dependent structured
multigrid to coarsen vertically

• Second, smoothed aggregation AMG on
single layer

• Implemented in Trilinos – ML/MueLu

Algebraic
Structured MG

Unstructured
AMG

Algebraic
Structured MG

Solver: Preconditioned Newton-Krylov

• MDSC-AMG is used as preconditioner for GMRES

• Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

See (Tezaur et al., 2015), (Tuminaro et al., 2016)

Solution: Matrix dependent semi-
coarsening algebraic multigrid (MDSC-AMG)

Matrix dependent grid transfers15

Grid transfers for semicoarsening in the vertical direction (prolongation matrix assembly)

• Refactor work needed to ensure matrix assembly is portable

1. Collapse matrix to only contain entries
in the vertical direction

◦ Sum all values in a plane

◦ No horizontal coupling

2. For each point in a coarse layer, solve
for the interpolation operator

◦ Each thread solves system and fills matrix

◦ Kokkos Kernels inline batched LU solve

Prolongation matrix assembly utilizes Kokkos for performance portability

Autotuned performance portable smoothers16

Smoother parameters:

• Limited to three levels, two smoothers

• Good parameter ranges provided by
Trilinos/MueLu team

Results:

• Applied to four cases (Greenland, 3-20km)
• Different architectures (blake: 8 CPU nodes/weaver:

GPU)
• Different equations (vel: FOStokes/ent: Enthalpy)

• 100 iterations, random search

• Timer: Preconditioner + Linear Solve

Autotuning framework: Carolyn Kao

Random search used to improve performance of multigrid smoothers on GPU

Numerical results

How well does the solver perform?

Weak Scalability Study18

Architectures:

• NERSC Cori-Haswell (HSW): 32 cores/node

• NERSC Cori-KNL (KNL): 68 cores/node

• OLCF Summit-POWER9-only (PWR9): 44 cores/node

• OLCF Summit-POWER9-V100 (V100): 44 cores/node
+ 6 GPU/node

Benchmark:

• First-order Stokes, hexahedral elements

• 16 to 1km structured Antarctica meshes, 20 layers

• 1 to 256 compute nodes
Mesh Example: 16km, structured Antarctica

mesh (2.20E6 DOF - 20 layer, 2 equations)
Benchmark used to assess performance

Performance on Cori and Summit19

Setup:

• Same input file for all cases
• Performance portable point smoothers

• No architecture specific tuning

Results:

• Performance degrades at higher resolutions
• (645->1798 total linear iterations)

• GPU scaling slightly better

• Speedup on GPU
• 3.2-4.1x speedup Summit over Cori

• 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPI-only simulations
without architecture specific tuning

Performance on Cori and Summit20

Setup:

• Tuned input files
• CPU block preconditioner

• Autotuned GPU point smoothers

• Multiple samples for confidence

Results:

• CPU scales better than GPU
• 16->18 avg. linear iterations on CPU

• 88->194 avg. linear iterations on GPU

• Speedup on GPU
• 1.9->1.2 speedup V100 over POWER9

• Speedup degrades at higher resolutions

Speedup over MPI-only simulations;
Tuned CPU model scales better

Areas to improve21

Weak Scaling Efficiency:

• Higher is better

• Areas of improvement
• CPU/GPU preconditioner construction

• GPU linear solve (better precond.)

Proportions of total solve time:

• Improve assembly on CPU
• 40-60% of total solve time

• Improve GPU linear solver
• 80-90% of total solve time

Focus on improving GPU solver

Changepoint detection for performance testing22

• Changepoint detection: process of finding abrupt variations in time series data

• Manual testing and analysis is increasingly infeasible

Total simulation time for a 2-20km resolution Antarctica mesh, executed nightly in Albany Land Ice

Two STDs

Changepoint Detection: Kyle Shan

Maintaining/improving performance and portability in the presence of active development is essential

Conclusions

Conclusions24

• HPC architectures are changing rapidly which poses a significant challenge for
open-science

• The Albany/Trilinos/Kokkos software stack offers an efficient way to meet this
challenge for large scale, finite element analysis

• Albany Land Ice is currently being used to provide sea-level change predictions

• Recent improvements in the linear solve of Albany Land Ice has allowed for
scalable performance portable ice sheet modeling

• Performance on next generation computing architectures is a work in progress
• 1.9->1.2x speedup of V100 node over POWER9 node in total solve time (tuned solvers)

• CPU scales better than GPU using best solvers (65.1% vs. 41.2% weak scaling efficiency)

• Maintaining performance and portability is crucial for an active code base
• A change-point detection algorithm can help identify performance variation

Funding/Acknowledgements25

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC) projects funded

by the U.S. Department of Energy, Office of Science (OS), Advanced Scientific Computing Research (ASCR) and

Biological and Environmental Research (BER).

Computing resources provided by the National Energy Research Scientific

Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

