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Motivation

Why are we interested in scalability?



Motivation

*  “The top priority today is the continued progress to exascale” — DOE Office of Science HPC Initiative
* Current scientific software must adapt to changing HPC architectures

* New scientific software must be designed to mitigate issues from changing HPC architectures
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OLCF Summit — IBM POWER9 ALCF Aurora (2022, >1 EF) - OLCF Frontier (2022, >1.5 EF) -
CPU + NVIDIA V100 GPU Intel Xeon CPU + Intel Xe GPU AMD EPYC CPU + AMD GPUs
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GPUs in open-science are here, need efficient access to computational power




What software tools are we using?



o | Albany Strategy — finite element codebase in C++

Albany is built primarily for Rapid Application
Development from Trilinos Agile Components Additive Manufacturing

Ice Sheets

Computational Mechanics

Component Examples (package name) & m m
‘

Atmosphere Dynamics
{." B

Mesh tools (STK)

Discretization tools (Intrepid2)

Nonlinear solver (NOX)

Preconditioners (I/fpack2) én_«':ﬂlzfsii)s and
ulc. es1gn

A 4

Testing Implementation

Linear solver (Belos)
Field DAG (Phalanx)
Automatic differentiation (Sacado)

Distributed memory linear algebra (Tpetra)

\[TY
Shared memory parallelism (Kokkos) 5 ;—ﬂl-i (TA

Many more...

https://github.com/SNLComputation/Albany / https://github.com/trilinos/Trilinos



https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos

;| Albany Overview

Trilinos Packages

Albany provides the “Glue” — connects components

Ex: Finite element assembly (FEA) Phalanx

*  Tpetra manages distributed memory linear algebra
(MPI+X)

FEA Overview

* Phalanx manages shared memory computations
(X) Gather Interpolate Evaluate
* @ather fills element local solution

* Interpolate solution/gradient to quad points
* Evaluate residual/Jacobian
* Scatter fills global residual/Jacobian

New PDEs only require new code for Evaluate
Memory Model

* Leverage existing tools for rapid development

Distributed Shared
Memory (DM) Memory (SM)

https://github.com/SNLComputation/Albany / https://github.com/trilinos/Trilinos



https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos

5 ‘ Phalanx — directed acyclic graph (DAG)

4 DAG Example Advantages: DAG Example (memoization)

* Increased flexibility, extensibility, usability '
* Arbitrary data type support Scatter

* Potential for task parallelism

Interpolate
Parameter

H
Basis
Functions
H

Extension:
. Stored
. . . Residual Fiold
* Performance gain through memoization e
Disadvantage:
* Performance loss through fragmentation IHSFC]I‘ITI*‘““ — SEE?I'lef
o 01UL101 1elc

DAG provides flexibility; Memoization improves performance
Gather

Cj()()l'(lill?lt-(‘ﬁ -
\5:34 1 DMAssembly a: Base Solution
: = a - b: Memoization
e 2 .
S Single CPU
= or GPU
=1
-

o

Haswell Haswell KNL P100
16MPI 16(MPI4+20MP) 68(MPI+40MP) 1(MPI4+GPU)




» | Sacado — automatic differentiation (AD)

* AD provides exact derivatives - no Jacobian derivation or hand-coding required

* Allows for advanced analysis capabilities — easily construct any derivative, hessian
* Ex: Optimization, sensitivity analysis

* Sacado data types are used for derivative components via class templates
* DFad (most flexible) — size set at run-time
* SLFad (flexible/efficient) — max size set at compile-time
* SFad (most efficient) — size set at compile-time

AD capability allows for advanced analysis while maintaining performance portability

91 serial-sfad e openmp-sfad e cuda70-sfad
3 serial-slfad ":j openmp-slfad = cuda70-slfad
=, _ = 10 - . £= 200 A o ap
) = gerial-dfad O openmp-dfad O e cuda70-dfad
° 31 : 2
é % 5 _E 100 4
£ 21 g g
1 . : ; | ! - 0 . ‘
108 10 10° 10° 104 10° 10 10
Problem Size (Number of Cells) Problem Size (Number of Cells) Problem Size (Number of Cells)

Fad Type Comparison: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8



o | Kokkos — performance portability

* Kokkos is a C++ library that provides
performance portability across multiple shared
memory computing architectures

* Examples: Multicore CPU, NVIDIA GPU, Intel KNL and
much more...

* Abstract data layouts and hardware features for
optimal performance on current and future
architectures

* Allows researchers to focus on application or
algorithmic development instead of architecture
specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

https://github.com/kokkos/kokkos/



https://github.com/kokkos/kokkos/

+ | Phalanx Evaluator — templated Phalanx node [

A Phalanx node (evaluator) is constructed as a  template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::
C}++'C|aSS evaluateFields (typename Traits::EvalData workset) {
. Kokkos::parallel for(
¢ EaCh evaluator IS templatEd on an Kokkos: :RangePolicy<ExeSpace>(0,workset.numCells),
evaluation type (e.g. residual, Jacobian) *this) ;

}

* The evaluation type is used to determine Cemplate<typenane Evall, typenane Traitss

the data type (e.g. double, Sacado data KOKKOS TNLINE FUNCTTON
types) void StokesFOResid<EvalT, Traits>::
operator () (const inté& cell) const{
* Kokkos RangePolicy is used to parallelize for (int node=0; node<numNodes; ++node)
. Residual (cell,node, 0)=0.;
over cells over an Execution Space (e.g. )
Serial, OpenMP, CUDA) for (int node=0; node < numNodes; ++node) {
for (int gp=0; gp < numQPs; ++gp) {
* Inline functors are used as kernels Residual(cell, node,t) +=
Ugrad(cell,qp,0,0)*wGradBF (cell,node,gp,0) +
o MDFleld data |ay0UtS Ugrad(cell,qp,0,1)*wGradBF (cell,node,gp, ) +

force(cell,gp,0) *wBF (cell,node,gp)
* Serial/OpenMP — LayoutRight (row-major) }

* CUDA - LayoutLeft (col-major) } !

Template parameters are used to get hardware specific features.



Linear solver in Albany Land Ice

How are we currently solving the linear system?



s | ProSPect — project under SciDAC

ProSPect = Probabilistic Sea Level Projections from Ice Sheet and Earth System Models @SM
5 year SciDAC4 project (2017-2022).

Energy Exascale
Earth System Model

Role: to develop and support a robust and scalable land ice solver based on
the First-Order (FO) Stokes model — Albany Land Ice

Requirements for Albany Land Ice (formerly FELIX):

* First-order Stokes model f

* Unstructured meshes e A

* Scalable, fast and robust %

* Verified and validated §

* Portable to new architecture machines ;
-

* Advanced analysis capabilities: deterministic
inversion, model calibration, uncertainty
guantification, sensitivity analysis

As part of DOE E3SM Earth System Model, solver will provide » }’
actionable predictions of 21 century sea-level change X i
(including uncertainty bounds). g 3

https://doe-prospect.github.io/



https://doe-prospect.github.io/

.« | Linear solver in Albany Land Ice

Problem: Ice sheet meshes are thin with high
aspect ratios

Algebraic
Structured MG

Solution: Matrix dependent semi-
coarsening algebraic multigrid (MDSC-AMG)

Algebraic
Structured MG

* First, matrix-dependent structured
multigrid to coarsen vertically

* Second, smoothed aggregation AMG on
single layer

*aﬁ% ) Uns';r:;éured
* Implemented in Trilinos — ML/MuelLu %%f%ﬁﬁﬁi**fﬁ*
Solver: Preconditioned Newton-Krylov

* MDSC-AMG is used as preconditioner for GMRES
* Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

See (Tezaur et al., 2015), (Tuminaro et al., 2016)



s | Matrix dependent grid transfers

Grid transfers for semicoarsening in the vertical direction (prolongation matrix assembly)

* Refactor work needed to ensure matrix assembly is portable

1. Collapse matrix to only contain entries 2. For each point in a coarse layer, solve

in the vertical direction for the interpolation operator
o Sum all values in a plane o  Each thread solves system and fills matrix
> No horizontal coupling o Kokkos Kernels inline batched LU solve

® ® T ®

D
o e -

® [ 1 ®

Prolongation matrix assembly utilizes Kokkos for performance portability



| Autotuned performance portable smoothers

Random search used to improve performance of multigrid smoothers on GPU

Smoother parameters: Results:
oo * Applied to four cases (Greenland, 3-20km)
* Limited to three levels, two smoothers o giffe)rent architectures (blake: 8 CPU nodes/weaver:
PU
* Good parameter ranges provided by - Different equations (vel: FOStokes/ent: Enthalpy)
Trilinos/MueLu team e 100 iterations, random search
type: RELAXATION * Timer: Preconditioner + Linear Solve
ParameterList:
’relaxation: type’: MT Gauss-Seidel 3 :
S e Sizeps,: positive integer Cases Manual Tuning (sec.) | Autotuning (sec.) | Speedup
’relaxation: damping factor’: positive real number blake vel 3.533972 2.658731 1.33x
— blake_ent 3.07725 2.036044 I51x
ParameterList: weaver_vel 19.13084 16.30672 1.17x
'relaxation: type’: Two-stage Gauss-Seidel weaver_ent 19.76345 15.00014 1.32x
’relaxation: sweeps’: positive integer
’relaxation: inner damping factor’: positive real number | Casos ‘ #Passed Runs | #Failed Runs ‘ ToFailure |
;YPe’ SHEE‘_{SEE_"V blake_vel 70 30 30%
’chebyshe(r: degree’: positive integer blake—ent 37 63 63%
’chebyshev: ratio eigenvalue’: positive real number weaver_vel 71 29 29%
’chebyshev: eigenvalue max iterations’: positive integer weaver_ent 26 74 T74%

Autotuning framework: Carolyn Kao



Numerical results

How well does the solver perform?



s | VWeak Scalability Study

Architectures:

*  NERSC Cori-Haswell (HSW): 32 cores/node

* NERSC Cori-KNL (KNL): 68 cores/node

*  OLCF Summit-POWER9-only (PWR9): 44 cores/node

*  OLCF Summit-POWER9-V100 (V100): 44 cores/node
+ 6 GPU/node

Benchmark:

* First-order Stokes, hexahedral elements

* 16 to 1km structured Antarctica meshes, 20 layers

* 1to 256 compute nodes

]
[
Mesh Example: 16km, structured Antarctica
mesh (2.20E6 DOF - 20 layer, 2 equations)

Benchmark used to assess performance



- | Performance on Cori and Summit

Setup:

* Same input file for all cases
* Performance portable point smoothers
* No architecture specific tuning

Results:

* Performance degrades at higher resolutions
* (645->1798 total linear iterations)
* GPU scaling slightly better

* Speedup on GPU
*  3.2-4.1x speedup Summit over Cori
* 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPIl-only simulations
without architecture specific tuning

Solver Weak Scaling I
Wall-clock time (s) vs. Nodes
1.00E+03
1.00E+01
4 16 64 256 i
—e—Cori (Haswell) 9.86E+01 9.92E+01 1.25E+02 1.97E+02 3.22E+02
Summit (V100) 3.01E+01 3.08E+01 3.81E+01 5.40E+01 7.78E+01
Speedup 3.27 3.22 3.27 3.65 4.13
DOFs/GPU 367255 367773 368086 368401 368566
1.00E+03
1.00E+02 e
o o—
i
1.00E+01 I
1 4 16 64 256

—e—Summit (POWER9) 6.24E+01 6.31E+01
Summit (V100) 3.01E+01 3.08E+01 3.81E+01 5.40E+01 7.78E+01

Speedup 2.07

DOFs/GPU 367255

2.05
367773

7.96E+01 1.22E+02

2.09 2.26
368086 368401 368566



Setup:

* Tuned input files
* CPU block preconditioner
* Autotuned GPU point smoothers

* Multiple samples for confidence
Results:
* CPU scales better than GPU

* 16->18 avg. linear iterations on CPU
* 88->194 avg. linear iterations on GPU

* Speedup on GPU
* 1.9->1.2 speedup V100 over POWER9

* Speedup degrades at higher resolutions

Speedup over MPI-only simulations;
Tuned CPU model scales better

o | Performance on Cori and Summit

§  HSW ¥ KNL PWRY § V1o
(o]
1201 *
]
X
100 1 x
A2 | P— I
—_
E
f; 60 — ]
=
40— x e
o eEe
20 - = g
Resolution 16km 8kim 4km 2km 1km
# Nodes 1 4 16 64 206
V100 Speedup | 1.92 1.85 1.88 L70 1.24
99% CT (191, 1.92) | (1.84, 1.86) |(1.84, 1.92) |(1.65, 1.74) |(1.21, 1.28)




,» | Areas to improve

Weak Scaling Efficiency:

Higher is better

Areas of improvement
*  CPU/GPU preconditioner construction
* GPU linear solve (better precond.)

Proportions of total solve time:

Improve assembly on CPU
* 40-60% of total solve time

Improve GPU linear solver
* 80-90% of total solve time

Focus on improving GPU solver

Total Solve

Total Fill

Preconditioner
Construction

Linear Solve

HSW
KNL
PWR9
V100

68.9% (67.0, 70.9

65.1% (63.3, 66.9

)
63.5% (62.3, 64.6)
)
42.2% (42.0, 42.4)

82.2% (81.5, 82.9)
85.3% (84.5, 86.0)
73.1% (70.0, 76.4)
82.9% (80.5, 85.4)

41.2% (38.2,44.5

67.5% (66.2, 68.8

39.5% (39.0, 40.0

)
33.0% (30.8, 35.5)
)
55.2% (54.7, 55.8)

63.0% (62.9, 63.1

( )
61.1% (60.6, 61.6)
( )
31.9% (31.6, 32.2)

1.0

0.8

0.6+

Proportions

0.4

0.21

0.0-

Timers

a: 16km
b: 8k
c: 4km
d: 2km
e: 1km

Resolution

B Total Fill
[ Preconditioner Construction
[ Linear Solve



2 ‘ Changepoint detection for performance testing

Maintaining/improving performance and portability in the presence of active development is essential

* Changepoint detection: process of finding abrupt variations in time series data

* Manual testing and analysis is increasingly infeasible

z Two STDs
400 mean /
""" upper
----- lower

350

300

250

200

Wall-clock Time (s)

150

Oct 2019 Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
Simulation Date

Total simulation time for a 2-20km resolution Antarctica mesh, executed nightly in Albany Land Ice
Changepoint Detection: Kyle Shan







. | Conclusions

* HPC architectures are changing rapidly which poses a significant challenge for
open-science

* The Albany/Trilinos/Kokkos software stack offers an efficient way to meet this
challenge for large scale, finite element analysis

* Albany Land Ice is currently being used to provide sea-level change predictions

* Recent improvements in the linear solve of Albany Land Ice has allowed for
scalable performance portable ice sheet modeling

* Performance on next generation computing architectures is a work in progress
* 1.9->1.2x speedup of V100 node over POWERSY node in total solve time (tuned solvers)

* CPU scales better than GPU using best solvers (65.1% vs. 41.2% weak scaling efficiency)

* Maintaining performance and portability is crucial for an active code base
* A change-point detection algorithm can help identify performance variation
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