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Motivation

Why are we interested in scalability?
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• “The top priority today is the continued progress to exascale” – DOE Office of Science HPC Initiative

• Current scientific software must adapt to changing HPC architectures

• New scientific software must be designed to mitigate issues from changing HPC architectures

OLCF Summit – IBM POWER9 
CPU + NVIDIA V100 GPU

ALCF Aurora (2022, >1 EF) –
Intel Xeon CPU + Intel Xe GPU

OLCF Frontier (2022, >1.5 EF) –
AMD EPYC CPU + AMD GPUs

NERSC Perlmutter (2021) – AMD EPYC CPU + NVIDIA A100 GPU

GPUs in open-science are here, need efficient access to computational power



Albany, Trilinos and Kokkos

What software tools are we using?



Component Examples (package name)

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear solver (NOX)

• Preconditioners (Ifpack2)

• Linear solver (Belos)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Distributed memory linear algebra (Tpetra)

• Shared memory parallelism (Kokkos)

• Many more…

Albany Strategy – finite element codebase in C++6

https://github.com/SNLComputation/Albany / https://github.com/trilinos/Trilinos

Albany is built primarily for Rapid Application 
Development from Trilinos Agile Components

https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos


Albany Overview7

Ex: Finite element assembly (FEA)

• Tpetra manages distributed memory linear algebra 
(MPI+X)

• Phalanx manages shared memory computations 
(X)
• Gather fills element local solution

• Interpolate solution/gradient to quad points

• Evaluate residual/Jacobian

• Scatter fills global residual/Jacobian

New PDEs only require new code for Evaluate

• Leverage existing tools for rapid development

Trilinos Packages

FEA Overview

Memory Model

https://github.com/SNLComputation/Albany / https://github.com/trilinos/Trilinos

Albany provides the “Glue” – connects components

https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos


Phalanx – directed acyclic graph (DAG)8

Advantages:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Extension:

• Performance gain through memoization

Disadvantage:

• Performance loss through fragmentation

DAG Example (memoization)DAG Example

Single CPU 

or GPU

DAG provides flexibility; Memoization improves performance



Sacado – automatic differentiation (AD)9

• AD provides exact derivatives - no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, hessian
• Ex: Optimization, sensitivity analysis

• Sacado data types are used for derivative components via class templates
• DFad (most flexible) – size set at run-time

• SLFad (flexible/efficient) – max size set at compile-time

• SFad (most efficient) – size set at compile-time

Fad Type Comparison: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

AD capability allows for advanced analysis while maintaining performance portability



Kokkos – performance portability10

• Kokkos is a C++ library that provides 
performance portability across multiple shared 
memory computing architectures
• Examples: Multicore CPU, NVIDIA GPU, Intel KNL and 

much more…

• Abstract data layouts and hardware features for 
optimal performance on current and future
architectures

• Allows researchers to focus on application or
algorithmic development instead of architecture 
specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/


Phalanx Evaluator – templated Phalanx node 11

A Phalanx node (evaluator) is constructed as a 
C++ class

• Each evaluator is templated on an 
evaluation type (e.g. residual, Jacobian)

• The evaluation type is used to determine 
the data type (e.g. double, Sacado data 
types)

• Kokkos RangePolicy is used to parallelize 
over cells over an Execution Space (e.g. 
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
• Serial/OpenMP – LayoutRight (row-major)

• CUDA – LayoutLeft (col-major)

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION 

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int node=0; node<numNodes; ++node){

Residual(cell,node,0)=0.;

}

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

Template parameters are used to get hardware specific features.



Linear solver in Albany Land Ice

How are we cur rently solving the linear system?



ProSPect – project under SciDAC13

Role: to develop and support a robust and scalable land ice solver based on 
the First-Order (FO) Stokes model → Albany Land Ice

Requirements for Albany Land Ice (formerly FELIX): 

• First-order Stokes model

• Unstructured meshes

• Scalable, fast and robust

• Verified and validated

• Portable to new architecture machines

• Advanced analysis capabilities: deterministic 
inversion, model calibration, uncertainty 
quantification, sensitivity analysis

As part of DOE E3SM Earth System Model, solver will provide 
actionable predictions of 21st century sea-level change 

(including uncertainty bounds).

ProSPect = Probabilistic Sea Level Projections from Ice Sheet and Earth System Models
5 year SciDAC4 project (2017-2022).

https://doe-prospect.github.io/

https://doe-prospect.github.io/


Linear solver in Albany Land Ice14

Problem: Ice sheet meshes are thin with high 
aspect ratios

• First, matrix-dependent structured
multigrid to coarsen vertically

• Second, smoothed aggregation AMG on 
single layer

• Implemented in Trilinos – ML/MueLu

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG

Solver: Preconditioned Newton-Krylov

• MDSC-AMG is used as preconditioner for GMRES

• Performance portability through Trilinos/MueLu (multigrid) + Trilinos/Belos (GMRES)

See (Tezaur et al., 2015), (Tuminaro et al., 2016)

Solution: Matrix dependent semi-
coarsening algebraic multigrid (MDSC-AMG)



Matrix dependent grid transfers15

Grid transfers for semicoarsening in the vertical direction (prolongation matrix assembly)

• Refactor work needed to ensure matrix assembly is portable

1. Collapse matrix to only contain entries 
in the vertical direction

◦ Sum all values in a plane

◦ No horizontal coupling

2. For each point in a coarse layer, solve 
for the interpolation operator

◦ Each thread solves system and fills matrix

◦ Kokkos Kernels inline batched LU solve

Prolongation matrix assembly utilizes Kokkos for performance portability



Autotuned performance portable smoothers16

Smoother parameters:

• Limited to three levels, two smoothers

• Good parameter ranges provided by 
Trilinos/MueLu team

Results:

• Applied to four cases (Greenland, 3-20km)
• Different architectures (blake: 8 CPU nodes/weaver: 

GPU)
• Different equations (vel: FOStokes/ent: Enthalpy)

• 100 iterations, random search

• Timer: Preconditioner + Linear Solve

Autotuning framework: Carolyn Kao

Random search used to improve performance of multigrid smoothers on GPU



Numerical results

How well does the solver perform?



Weak Scalability Study18

Architectures:

• NERSC Cori-Haswell (HSW): 32 cores/node

• NERSC Cori-KNL (KNL): 68 cores/node

• OLCF Summit-POWER9-only (PWR9): 44 cores/node

• OLCF Summit-POWER9-V100 (V100): 44 cores/node 
+ 6 GPU/node

Benchmark:

• First-order Stokes, hexahedral elements

• 16 to 1km structured Antarctica meshes, 20 layers

• 1 to 256 compute nodes
Mesh Example: 16km, structured Antarctica 

mesh (2.20E6 DOF - 20 layer, 2 equations)
Benchmark used to assess performance



Performance on Cori and Summit19

Setup:

• Same input file for all cases
• Performance portable point smoothers

• No architecture specific tuning

Results:

• Performance degrades at higher resolutions
• (645->1798 total linear iterations)

• GPU scaling slightly better

• Speedup on GPU
• 3.2-4.1x speedup Summit over Cori

• 2.1-2.3x speedup V100 over POWER9

Speedup achieved over MPI-only simulations 
without architecture specific tuning



Performance on Cori and Summit20

Setup:

• Tuned input files
• CPU block preconditioner

• Autotuned GPU point smoothers

• Multiple samples for confidence

Results:

• CPU scales better than GPU
• 16->18 avg. linear iterations on CPU

• 88->194 avg. linear iterations on GPU

• Speedup on GPU
• 1.9->1.2 speedup V100 over POWER9

• Speedup degrades at higher resolutions

Speedup over MPI-only simulations; 
Tuned CPU model scales better



Areas to improve21

Weak Scaling Efficiency:

• Higher is better

• Areas of improvement
• CPU/GPU preconditioner construction

• GPU linear solve (better precond.)

Proportions of total solve time:

• Improve assembly on CPU
• 40-60% of total solve time

• Improve GPU linear solver
• 80-90% of total solve time

Focus on improving GPU solver



Changepoint detection for performance testing22

• Changepoint detection: process of finding abrupt variations in time series data

• Manual testing and analysis is increasingly infeasible

Total simulation time for a 2-20km resolution Antarctica mesh, executed nightly in Albany Land Ice

Two STDs

Changepoint Detection: Kyle Shan

Maintaining/improving performance and portability in the presence of active development is essential



Conclusions
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• HPC architectures are changing rapidly which poses a significant challenge for 
open-science

• The Albany/Trilinos/Kokkos software stack offers an efficient way to meet this 
challenge for large scale, finite element analysis

• Albany Land Ice is currently being used to provide sea-level change predictions

• Recent improvements in the linear solve of Albany Land Ice has allowed for 
scalable performance portable ice sheet modeling

• Performance on next generation computing architectures is a work in progress
• 1.9->1.2x speedup of V100 node over POWER9 node in total solve time (tuned solvers)

• CPU scales better than GPU using best solvers (65.1% vs. 41.2% weak scaling efficiency)

• Maintaining performance and portability is crucial for an active code base
• A change-point detection algorithm can help identify performance variation
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