Preparing Trilinos Solvers for
Exascale Wind Farm
Simulations

.. ‘rq J !i &
E__. v ;_??-J-'___ , é'r’

- <

o b o ,“__‘
| =k
I —

mightibelexpressedlin}

Anylsubjectivelviewslo
StatesfGovernment.

hislpaperldescribesfobijectiveftechnicallresultsfandlanalysis.|
f S of|EnergyforfthejUnited|

hepaperfdoinotinecessarilyjrepresentjthejviewsjofftheju.S |

National
Laboratories

8%

Jonathan Hu, Luc Berger-Vergiat,
Ichitaro Yamazaki

SIAM Parallel Processing

Wednesday, February 23, 2022

SandialNationalfLaboratoriesfislalmultimissionllaboratorvimanagedlandjoperatedib
subsidiaryjoflHoneywelljinternationalfinc. fforjtheU.S JDepartmentjof] '

ationalfTechnologvi&IEngineerinalSolutionsiofiSandia ILLC
oflEnergy'sjNationaljNucleardSecurityJAdministrationfunderlcontractiDE-N

SAND2022-2126C

f" YA CEFARTEENE OF
(@ ENERGY NISE

cioar Socurky A s

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology &
Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-
NAO0003525.

Outline

ExaWind project overview
Role of linear solvers
Multigrid and Trilinos
Numerical Results

Ongoing and Future Work

ExaWind Goals

Create a multi-fidelity modeling and
simulation environment for wind
turbines and wind farms

Can we predict and understand:

Impact of wakes on
downstream
turbines?

Enable simulations on current and
next-generation supercomputers
Evolution of the

Enable a new understanding and
wakes?

ability to predict wind farm flows and
turbine responses

Formation of the

Create a foundation for next- wakes?

generation lower-fidelity engineering

models ... and all in a highly

complex, dynamic metocean
environment

Photo by Gitte Nyhus Lundorff, Bel Air
Aviation Denmark — Helicopter Services

Slide courtesy of M. Sprague (NREL)

ExaWind primary application codes

Nalu-Wind AMR-Wind
» https://github.com/exawind/nalu-wind « https://github.com/Exawind/amr-wind
* Incompressible-flow computational fluid * Incompressible-flow CFD code
dynamics (CFD) code « Structured-grid finite-volume background solver with
* Unstructured-grid finite-volume adaptive mesh refinement (AMR)
discretization * Built on AMReX library [
e Closely tied to Trilinos * Multi-level geometric multigrid linear-system solvers
 lterative linear-system solvers « Coupled to Nalu-Wind through overset meshes ’
» Algebraic multigrid preconditioners * Can utilize hypre solvers & preconditioners
« Kokkos abstraction layer
« STK mesh data structures
« Can also utilize hypre solvers &
preconditioners TIOGA |
« Critical for blade-resolved simulations * https://github.com/jsitaraman/tioga
* Overset mesh coupling

i
i
Slide adapted from M. Sprague (NREL) I

For purposes of this talk, we focus on the linear solvers in Nalu-Wind.

https://github.com/exawind/nalu-wind
https://github.com/Exawind/amr-wind
https://github.com/jsitaraman/tioga

Role of Linear Solvers in Nalu-Wind

Nalu-Wind solves the incompressible Navier Stokes equations

Momentum and continuity phases require solution of large sparse linear systems.
Matrices and thus solvers must be rebuilt for every solve.
Efficient Krylov solvers and scalable preconditioners are necessary.

Multigrid is a natural fit.

Multigrid Introduction

 Scalable solution method for linear systems arising from elliptic PDEs
» Often used as preconditioner to Krylov method

* [dea: capture error at multiple resolutions:
— Smoothing reduces oscillatory error (high energy)
— Coarse grid correction reduces smooth error (low energy)

Multigrid Introduction

 Scalable solution method for linear systems arising from elliptic PDEs
 Often used as preconditioner to Krylov method

* [dea: capture error at multiple resolutions:
— Smoothing reduces oscillatory error (high energy)
— Coarse grid correction reduces smooth error (low energy)

» Geometric multigrid (GMG)
* Application supplies A/'s, R’s, and P;s
* Algebraic multigrid (AMG)

* Preconditioner generates A’s, R’s, P/'s Ry (
- Two ways to coarsen @

* Ruge Stueben (coarse DOFs subset of

fine) Sa
* Aggregation (group fine DOFs to form

coarse)

Multigrid Introduction

 Scalable solution method for linear systems arising from elliptic PDEs
» Often used as preconditioner to Krylov method

* |dea: capture error at multiple resolutions:
— Smoothing reduces oscillatory error (high energy)
— Coarse grid correction reduces smooth error (low energy)

[Solving Au = f with mitial guess v |
*]r Pre-smoothing]
[Calculate residual r = f — Au]
[Restrict r to coarser grid]
Approximate error e Recursive
by solving Ae =r loop
on coarser grid
[Interpolate e to original grid]
C ctv(v=v+
[orrect v (v=v +e)] 82

-
-

{ Post-smoothing]

‘ Trilinos Project

/_ [Linear Solver Interfaces (Stratimikos, Solver Factory) I\

[Multilevel Domain Decomposition Methods github.com/trilinos/Trilinos
[

[5hyLU}
terative nl:nmmﬂ.]
(ShyLU/BDDC) [Shvl.l..lfFROSch}

LU factorization (KLU, J [Cholesky and LDL factorizations J
ShyLU/Basker) (ShyLU/Tacho)

f h ASC-ICATDM/ECPH/DOE Applications

Kokkos
Tools

github.com/kokkos

(i

=1 MuelLu Multigrid Library

Unstructured algorithms
o classic smoothed aggregation (SA)
> non-symmetric AMG
o AMG for Maxwell’s equations

Structured Algorithms
> semi-coarsening AMG

o geometric MG
o structured-grid aggregation-based MG

Leverages many other Trilinos scientific libraries
o Shared memory parallelism from Kokkos = architecture portability

o Sparse distributed linear algebra: Tpetra
o Distributed smoothers: Ifpack2

o Shared memory smoothers, SpGEMM, distance-2 coloring: Kokkos-
Kernels

> Load balancing: Zoltan2
> Direct Solvers: Amesos?2

Numerical Experiments

Rotating wind turbine simulation using refined version of NRELSMW mesh
o BMW reference wind turbine (Jonkman et al., NREL Tech Report #TP-500-38060, 2009)
> 634.5e6 nodes, 719.4e6 elements

> “hybrid” mesh: extruded structured around blade, unstructured around hub and hub/blade
transition

Experiments run on ORNL Summit supercomputer
> 4600 compute nodes, each with two Power9 CPUs, six NVIDIA Te

ExaWind is primarily interested in strong-scaling
> Global size problem is fixed
o Decrease time-to-solution by adding compute resources

Two linear solves for initial wall distance

Simulation is run for 10 times steps.
> 4 Picard iterations per time step

40 linear solvers per physics phase

e
IT

Numerical Experiments

Rotating wind turbine simulation using refined version of NRELSMW mesh
o BMW reference wind turbine (Jonkman et al., NREL Tech Report #TP-500-38060, 2009)

> 634.5e6 nodes, 719.4e6 elements

> “hybrid” mesh: extruded structured around blade, unstructured around hub and hub/blade
transition

Experiments run on ORNL Summit supercomputer
> 4600 compute nodes, each with two Power9 CPUs, six NVIDIA Te

ExaWind is primarily interested in strong-scaling
> Global size problem is fixed

o Decrease time-to-solution by adding compute resources

Momentum linear solver: GMRES/SGS
Continuity linear solver: GMRES/AMG

e
IT

Overall simulation wall clock times

10 time steps
> 4 Picard iterations per time step

Momentum (not shown) is < 100s

Continuity phase accounts for >
90% of runtime

> Preconditioner setup and solve
dominates

1300 -

1200 |

—~ 1100

Time (s

900 |

800

700 -

600 |

500

540

1000 |

|

—&— Continuity
=36 Overall

)

| |

720

900

1080 1260 1440 1620 1800 1980 2160
GPUs

Continuity Solve: Algorithmic Scalability

Algorithmically scalable

40

39+

387

377

31 r

30

o Some variability across individual
solves

Average Continuity Solve
Iterations per Simulation

60

95 |

90 |

#lterations
W ELN N
o (] o

W
o
T

N
(&)

20

15

-/ A

MPI ranks

- - 540 ——1440
——720 - - 1620

900 ——1800|
——1080 1980
——1260 ~ — 2160 ,/

\ \J LW |

by YA K W\

N S \'

bl \;

\ ~ &t
5 10 15 20 25 30 35

Matrix Solve

40

AMG solver details

Smoother: degree 2 Chebyshev polynomial

Coarse grid solve: degree 16 Chebyshev polynomial

Local "greedy” aggregation, improve grid transfer via damped Jacobi iteration

Rebalancing of multigrid matrices to subset of GPUs
> Delayed until level 2 matrix or greater (level 0 = application matrix)

o Occurs if #rows per GPU falls below 10K

Multigrid Hierarchy @ 540 GPUs

level rows nnz nnz/row c ratio procs
0 634469604 4652826078 7.33 540
1 73132340 2490326926 34.05 8.68 540
2 4687448 315661782 67.34 15.60 93
3 389076 37062352 95.26 12.05 7
4 29815 6095493 204 .44 13.05 1

Operator complexity: 1.61

Multigrid Hierarchy @ 2160 GPUs

Yi=Ennz(A;)
nnz(Ap)

Operator complexity =

level rows nnz

0 634469604 4652826078

1 73885977 2536703231

2 4923757 346194059

3 404337 39939219

4 32311 7341495
Operator complexity: 1.63

nnz/row

c ratio

8.59

15.01
12.18
12.51

procs

2160
2160
98

8

1

Continuity phase details

Matrix assembly

o “cont_load”, “cont_assembly”
> Negligible cost

Preconditioner setup and solve
dominate

> Neither scales particularly well

900_‘
800 |

700 |

500
400 |
300 |
200

100

600 |

720

800

1080

1260

1440

1620

[cont_misc
I cont_prec_setup
I cont_solve
[cont_load
I cont_assm
[cont _init

1800 1980 2160

Continuity: AMG Setup Time by Level

Level O
o Application-supplied matrix
o smoother setup only

Level 1
> First coarse grid level

Level 2

o Rebalance matrix and move to subset of
GPUs

Time (s)

Levels 3 and 4 are inconsequential

0 1 2 3 4
Multigrid level

Continuity: AMG Setup Time by Level

Level 1
> @2160 GPUs

o Total: 58.3 s

> Dropping weak connections:
> Triple-matrix product: 25s
> Prolongator smoothing: 9s

Level 2
> @ 2160 GPUs

o Total: 112.7s

> Dropping weak connections:

o Triple-matrix product: 32s
o Transferring aux data: 24s
> Rebalancing matrix: 25s

20s

13s

Time (s)

2 3 4
Multigrid level

Some Observations

Chebyshev smoothing requires estimate of largest eigenvalue
> We've observed that 1.1 is a good estimate for all but coarsest system

> Avoids power iterations for eigen estimates

Unnecessary to coarsen to small system that can be solved directly
o Truncating hiearchy and applying iterative method to large coarse system is effective

An obvious next step is to optimize dropping of weak connections and auxiliary data
transfers

Ongoing Work

Investigate balance between AMG setup and solve
o May be able to reduce AMG setup cost by creating lower complexity preconditioner
o Lowering complexity will likely hurt convergence

Refactor Nalu-Wind momentum linear system on GPU
o Currently (u,v,w) system
o Can be rewritten as scalar system with 3 right-hand sides
o Scalar matrix is 3x smaller than (u,v,w) matrix

Remove usage of uniform virtual memory (UVM) in Nalu-Wind itself

Assess performance on other ORNL platforms

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility at the

Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC05-000R22725.

Funding was provided by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering, and early testbed platforms, in support of
the nation?s exascale computing imperative.

