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The idea behind GMRES
the (Generalized Minimum RESidual Method):

To solve Ax = b, where A is n X #:
1. Build an orthonormal basis for a Krylov subspace:

span{b,Ab,A%b, ... A" 1p}

2. Use an orthogonal projection to find an approximate solution which
minimizes the residual: I

I'b—Ax I,



3 1| GMRES (Generalized Minimum RESidual) Algorithm:

Algorithm GMRES (Modified Gram-Schmidt)

1: v = ||b||]2 and vy = b/~

2: forj=1: mdo

3 w; = Ay, < Sparse Matrix-Vector Product
4: fori=1:jdo —  (SpMV)

5: h; = v]w;

6: wj = wj — hjv; Orthogonalizing the next
7: end for basis vector

8 hip1y = ||lwj2.

9 Vip1 = Wj/hjp,

10: end for -

11: Define the (m + 1) x m matrix H = {h;}

12: Solve least-squares problem Hd = ~e; for d.

13: X = Vpd

Restart when subspace size gets too large!

See details in “Iterative Methods for Sparse Linear Systems 2" ed.” by Saad.



+ I Why incorporate lower precisions in GMRES?

*Reduce data movement to overcome memory-bound algorithms.

=Use cheaper floating-point operations.

Obstacles to lower precision:
=Lower precision computations result in more roundoff error!
=..but applications still need high level of accuracy in solutions.

=Tricky to find where to use lower precision in algorithm while maintaining
accuracy.

So how DO we use lower precision in GMRES?



s | Iterative Refinement with GMRES (GMRES-IR)

Algorithm 1 Iterative Refinement with GMRES Error Correction

1: rg = b— Axg doublel

2: for 7 =1,2,... until convergence: do

3: Use GMRES(m) to solve Au; = r; for correction u; |[single]
4: xi11 = x; + u; |double

5 riv1 = b— Ax;q |[double]

6: end for

(At each restart, update solution vector and recompute residuals in double
precision.)

Note: We store TWO copies of matrix A (double and single).

Not a new algorithm. See related works:

oNeil Lindquist, Piotr Luszczek, and Jack Dongarra. Improving the performance of the GMRES method using
mixed-precision techniques.

oHartwig Anzt, Vincent Heuveline, and Bjorn Rocker. Mixed precision iterative refinement methods for linear
systems: Convergence analysis based on Krylov subspace methods.

oErin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative refinement in
three precisions.



« I Implementation of Krylov Solvers in Trilinos

*Belos: Linear Solvers package in Trilinos:
= All linear algebra kernels are abstracted through “adapter” interface.

= Solvers interface does not support mixing precisions! Mixed precision must occur
through the adapter.

=Kokkos and Kokkos Kernels:
= Portable parallel linear algebra.
= Performant BLAS kernels for GPU (single node).

*New Mixed Precision Krylov Solvers Software:
= New adapter to use Kokkos as the linear algebra backend for solvers
= Tested performance on a single node with V100 GPU. o

: RilINOS




7 | Experiment Setup:

Algorithm 1 Iterative Refinement with GMRES Error Correction

1: 79 = b— Az |double
2: for 7 =1,2,... until convergence: do
3: Use GMRES(m) to solve Au; = r; for correction u; |single|

4: xir1 = x; + u; |double]
: rie1 = b— Ax;., [[double

5
6: end for

Experiment parameters:

« Restarting GMRES at every 50 iterations.

 Recompute residuals in double at each restart (step 4 & 5).

» Stopping when relative residual less than 1e-10. (|| b — Ax||,/||b]| < 1071°)
« Tests run on a V100 GPU.




s | GMRES-IR wins over “switching” strategy (GMRES-FD):

=What if we run GMRES in single
precision and then switch to double
precision?

=But where to switch?

*GMRES-FD (float-double switch)
= Min solve time: 41.22s

= Min iterations: 3567

= GMRES-IR;
= Solve time: 41.03s

= [terations: 4100

sGMRES-IR attains the same
minimum solve time as the
switching strategy!

No need to choose a switching
noint!
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double?

Atmosmodj:

» SuiteSparse, cfd

* n=1,270,432

* GMRES Double: 5.12s, 1740 iterations
 GMRES-IR: 3.78s, 1750 iterations

BentPipe2D1500:

» 2D convection-diffusion

* n=2.25 million

* GMRES Double: 50.26s, 12,967 iterations
 GMRES-IR: 38.03s, 13,150 iterations

GMRES-IR convergence follows
convergence of GMRES Double!

Relative Residual Norm

Relative Residual Norm

9 I How does convergence of GMRES-IR compare to GMRES

Linear Solver Convergence Atmosmod;
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Kernel Speedup:

Solver Timings
Atmosmodj
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Atmosmodj: BentPipe2D1500:
 GMRES Double: 50.26s, 12,967 iterations

* GMRES Double: 5.12s, 1740 iterations
 GMRES-IR: 3.78s, 1750 iterations  GMRES-IR: 38.03s, 13,150 iterations



1 | Kernel speedups compared with other matrices:
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2 ‘ Does GMRES-IR convergence always follow GMRES
double?

parabolic_fem:

» SuiteSparse, cfd
 n=525,825

« TOP: right-hand side all ones
 BOTTOM: right-hand side from

SuiteSparse
Double IR
RHS Vec Time Iters Time Iters Speedup
RHS Ones | 42.39 27493 4463 36,600 0.95
RHS _Given | 50.04 32470 39.16 32,500 1.28
RHS Norm | 54.02 34960 41.72 35,000 1.29
RHS_ Unif | 51.98 33,625 41.64 34,150 1.25
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13 I A model for L2 cache use with low precision SpMV:

Suppose that A has w nonzero elements per row and n rows (so nnz = w+n).

A stored in CSR format with 2 vectors of size w * n:
Values of A: A, Column indices: colld (Ignore vector of row ptrs)

Computing the first dot product of the SPMV:

w—1

Y Avatli] * x[colId[i]].

1=0

Case: fp64 with no cache reuse (i.e. every element of x has to be read into cache every time needed):
n * w * [size(int) + 2 * size(double)] = 20wn.

Case: fp32 with “perfect” cache reuse (i.e. any elements of x read into cache stay in cache until not needed):

nxwx|size(int)+size( float)|+nxsize( float) = (8w-+4)n.

20wn  dw
(Bw+4)n  2w+1

Expected speedup: . — 2.5 2as w gets large.

** Thanks to Christian Trott and Luc-Berger Vergiat for help in creating this model!



4 I SPMV Speedup vs Nonzero Structure of Matrix:

Very good speedup
for matrices w/
small nnz/row.

Three smallest
matrices in test set.

Speedup SpMV Double to Float
N

*  Max nnzirow < 15
T Maxnnzirow == 15 | 4

200 250 300 350

Max Nonzeros in a Row

Large max nonzeros
per row; low SpMV
speedup



s I How does the Krylov subspace (restart) size affect solve
time?
Solver Timings Laplace3D150 Subspaces | GMRES Double: Left bars
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GMRES-IR fastest (Less practical in reality.)
GMRES double fastest



1 I How does preconditioning affect GMRES-IR

convergence?
Stretched2D1500: Prei%gnditioned Linear Solver Convergence Stretched2D1500 ‘
« 2D Laplacian on Stretched Grid 1071 - =~ Double Prec |
e n=2.25 million é 1072 | —— Single Prec [ I
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Preconditioned GMRES-IR convergence still follows convergence ‘
of GMRES Double!



17 I Polynomial Preconditioning

0 5Solver Timings Stretched2D1500 Poly Prec

B Orthogonalization

- *k
LEFT: GMRES double w/ fp64 20 |- A%x -
polynomial preconditioner. = Other
MIDDLE: GMRES double w/ fp32
polynomial preconditioner. = 15
RIGHT: GMRES-IR w/ fp32 GSJ
polynomial preconditioner. 2 10
Polynomial preconditioning shifts 5
main expense to SpMV rather than
dense orthogonalization kernels.

0
Double Single IR Single
Prec Prec Prec
Solve Type

**For polynomial preconditioning details, see:
Jennifer Loe, Erik Boman, and Heidi Thornquist. Polynomial Preconditioned GMRES in Trilinos: Practical Considerations for High-Performance

Computing



18 ‘ Results from SuiteSparse Matrices:

UF id
2266
2267
1858
1849
1852
1853
1367

895
2259

894
1266

805
1431
2649

Matrix Name
atmosmod;
atmosmodl
crashbasis
Dubcova3
FEM_3D_thermal2
parabolic_fem
Si02

stomach
thermomech_dM
lung2

hood

cfd2

filter3D
Transport
BentPipe2D1500
Laplace3D150
UniFlow2D2500
Stretched2D1500

N prec
1,270,432
1,489,752
160,000
146,698
147,900
525,825
155,331
213,360
204,316
109,460 j 1
220,542 | 42
123,440 p 25
106,437 p 25
1,602,111 p 25
2,250,000
3,375,000
6,250,000
2,250,000 p 40

Double
Time Iters
5.12 1740
1.61 446
0.55 431
1.15 1131
0.84 775
42.39 27493
18.23 17385
0.51 359
0.27 88
0.46 206
13.98 5762
6.05 1092
25.24 4449
8.35 339

IR
Time

3.78
1.23
0.52
1.05
0.80
44.63
16.86
0.52
0.27
0.49
9.04
4.55
18.12
8.73

Iters

1750
450
450
1150
800
36600
17600
400
100
250
5000
1100
4450
450

Speedup
1.35
1.31
1.07
1.10
1.05
0.95
1.08
0.98
1.00
0.94
1.55
1.33
1.39
0.96

*prec column:
p = polynomial prec w/
degree
j = Jacobi prec w/ block size

Example PDE stencil

problems from

previous slides.



19 ‘ Results from SuiteSparse Matrices:

UF id Matrix Name
2266 atmosmod;j
2267 atmosmodl
1858 crashbasis
1849 Dubcova3
1852 FEM 3D _thermal2
1853 parabolic_fem
1367 SiO2
895 stomach
2259 thermomech_dM
894 lung2
1266 hood
805 cfd2
1431 filter3D
2649 Transport
BentPipe2D1500
Laplace3D150
UniFlow2D2500
Stretched2D1500

N prec
1,270,432
1,489,752
160,000
146,698
147,900
525,825
155,331
213,360
204,316
109,460 j 1
220,542 j 42
123,440 p 25
106,437 p 25
1,602,111 p 25
2,250,000
3,375,000
6,250,000
2,250,000 p 40

Time

Double

5.12
1.61
0.55
1.15
0.84

42.39

1

1

2

5
1
2
2

8.23

3.98
6.05
5.24
8.35
0.26
6.93
9.62
2.66

Iters

1740
446

431
1131
775
27493
17385

5762
1092
4449
339
12967
2387
2905
482

IR
Time Iters
3.78 1750
1.23 450

0.52 450
1.05 1150
0.80 800
44.63 36600
16.86 17600
0.52 400
0.27 100
0.49 250

9.04 5000
455 1100
18.12 4450
8.73 450
38.03 13150
11.75 2400
21.17 3000

14.37

Speedup
1.35
1.31

1.33
1.39
0.96
1.32
1.44
1.40

*prec column:

p = polynomial prec w/

degree

j = Jacobi prec w/ block size

Quickly converging
problems; not much
room for speedup
from GMRES-IR.

ﬂ
!
|



20 ‘ Results from SuiteSparse Matrices:

UF id Matrix Name
2266 atmosmod;j

2267 atmosmodl

1858 crashbasis

1849 Dubcova3

1852 FEM 3D thermal2
1853 parabolic_fem

1367 SiO2

895 stomach

2259 thermomech_dM
894 lung2

1266 hood

805 cfd2

1431 filter3D 106,437 p 25 25.24 4449 18.12 4450 1.39
2649 Transport 1,602,111 p 25 8.35 339 8.73 450 0.96

BentPipe2D1500
Laplace3D150
UniFlow2D2500
Stretched2D1500

N prec

1,270,432

1,489,752
160,000
146,698
147,900
525,825
155,331
213,360
204,316
109,460 j 1
220,542 j 42
123,440 p 25

2,250,000
3,375,000
6,250,000
2,250,000 p 40

Double
Time Iters
5.12 1740
1.61 446
0.55 431
1.15 1131
0.84 775
42.39 27493
18.23 17385
0.51 359
0.27 88
0.46 206
13.98 5762
6.05 1092

50.26 12967
16.93 2387
29.62 2905
22.66 482

IR
Time

3.78
1.23
0.52
1.05
0.80
44.63
16.86
0.52
0.27
0.49
9.04
4.55

38.03
11.75
21.17
14.37

Iters

1750
450
450
1150
800
36600
17600
400
100
250
5000
1100

13150
2400
3000

500

Speedup
1.35
1.31
1.07
1.10
1.05

0.98
1.00
0.94
1.55
1.33

1.32
1.44
1.40
1.58

*prec column:

p = polynomial prec w/
degree

j = Jacobi prec w/ block size

Right-hand side
made more difficult
convergence.



21 ‘ Results from SuiteSparse Matrices:

Double IR
UF id Matrix Name N prec |Time Iters Time Iters |Speedup
2266 atmosmod;j 1,270,432 5.12 1740 3.78 1750

2267 atmosmod] 1,489,752 . 446 1.23 450

1858 crashbasis 160,000 0.55 431 0.5 450 1.07 * | _

1849 Dubcova3 146,698 1.15 1131 1.05 1150 1.10 piec CI;O umr.]' | / I

1852 FEM_3D_thermal2 | 147,900 0.84 775 0.80 800 1.05 p = polynomial prec w

1853 parabolic_fem 525,825 42.39 27493 44.63 36600 0.95 .d?%ree : : i

1367 Si02 155,331 18.23 17385 16.86 17600 1.08 )= acobi prec w/ block size

895 stomach 213,360 0.51 359 0.52 400 0.98
2259 thermomech_dM 204,316 0.27 88 0.27 100 1.00

894 lung?2 109,460 j 1 0.46 206 0.49 250 0.94 Very good Speedup
1266 hood 220,542 j42 . 9.04 5000 for SuiteSparse test
805 cfd2 123,440 p 25 . 455 1100 roblems!

1431 filter3D 106,437 p 25 . 18.12 4450 P ’

2649 Transport 1,602,111 p 25 8.35 339 8.73 450 0.96 i
BentPipe2D1500 (2,250,000 50.26 12967 38.03 13150 1.32 |
Laplace3D150 3,375,000 16.93 2387 11.75 2400 1.44
UniFlow2D2500 6,250,000 29.62 2905 21.17 3000 1.40
Stretched2D1500 |2,250,000 p 40 22.66 482 14.37 500 1.58




2 | Future Work:

‘Implement GMRES-IR in Tpetra solvers in Belos package of Trilinos

‘Make GMRES (double) with single precision preconditioning available in
Tpetra Belos solvers.

*Incorporate half precision computations (fp16 and bfloat16).

*Test performance on other (non-NVIDIA) GPU architectures- AMD and
Intel.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration.



