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The idea behind GMRES 
the (Generalized Minimum RESidual Method):
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GMRES (Generalized Minimum RESidual) Algorithm: 3

Orthogonalizing the next 
basis vector

Sparse Matrix-Vector Product 
(SpMV)

Restart when subspace size gets too large!

See details in “Iterative Methods for Sparse Linear Systems 2nd ed.” by Saad. 



Why incorporate lower precisions in GMRES?

Reduce data movement to overcome memory-bound algorithms.
Use cheaper floating-point operations.

Obstacles to lower precision:
Lower precision computations result in more roundoff error!
…but applications still need high level of accuracy in solutions. 
Tricky to find where to use lower precision in algorithm while maintaining 
accuracy.

So how DO we use lower precision in GMRES? 
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Iterative Refinement with GMRES (GMRES-IR)5

 (At each restart, update solution vector and recompute residuals in double 
precision.)

 Note: We store TWO copies of matrix A (double and single). 
 Not a new algorithm.  See related works:
oNeil Lindquist, Piotr Luszczek, and Jack Dongarra. Improving the performance of the GMRES method using 
mixed-precision techniques. 

oHartwig Anzt, Vincent Heuveline, and Bjorn Rocker. Mixed precision iterative refinement methods for linear 
systems: Convergence analysis based on Krylov subspace methods.

oErin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative refinement in 
three precisions.



Implementation of Krylov Solvers in Trilinos

Belos: Linear Solvers package in Trilinos:
 All linear algebra kernels are abstracted through “adapter” interface.
 Solvers interface does not support mixing precisions!  Mixed precision must occur 

through the adapter.

Kokkos and Kokkos Kernels: 
 Portable parallel linear algebra. 
 Performant BLAS kernels for GPU (single node).

New Mixed Precision Krylov Solvers Software:
 New adapter to use Kokkos as the linear algebra backend for solvers.
 Tested performance on a single node with V100 GPU.
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Experiment Setup:7



GMRES-IR wins over “switching” strategy (GMRES-FD):8

What if we run GMRES in single 
precision and then switch to double 
precision?

But where to switch?  

GMRES-FD (float-double switch)
Min solve time: 41.22s
Min iterations: 3567

 GMRES-IR:
Solve time: 41.03s
 Iterations: 4100

GMRES-IR attains the same 
minimum solve time as the 
switching strategy!
No need to choose a switching 
point!



How does convergence of GMRES-IR compare to GMRES 
double?
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BentPipe2D1500:
• 2D convection-diffusion 
• n = 2.25 million 
• GMRES Double: 50.26s, 12,967 iterations
• GMRES-IR: 38.03s, 13,150 iterations

GMRES-IR convergence follows 
convergence of GMRES Double!

Atmosmodj:
• SuiteSparse, cfd
• n = 1,270,432
• GMRES Double: 5.12s, 1740 iterations
• GMRES-IR: 3.78s, 1750 iterations



Kernel Speedup:10

Atmosmodj:
• GMRES Double: 5.12s, 1740 iterations
• GMRES-IR: 3.78s, 1750 iterations

BentPipe2D1500:
• GMRES Double: 50.26s, 12,967 iterations
• GMRES-IR: 38.03s, 13,150 iterations



Kernel speedups compared with other matrices:11



Does GMRES-IR convergence always follow GMRES 
double?
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parabolic_fem:
• SuiteSparse, cfd
• n = 525,825

• TOP: right-hand side all ones
• BOTTOM: right-hand side from 

SuiteSparse



A model for L2 cache use with low precision SpMV:13

 Computing the first dot product of the SPMV: 

 Expected speedup: 

Case: fp32 with “perfect” cache reuse (i.e. any elements of x read into cache stay in cache until not needed): 

 ** Thanks to Christian Trott and Luc-Berger Vergiat for help in creating this model!

Case: fp64 with no cache reuse (i.e. every element of x has to be read into cache every time needed): 



SpMV Speedup vs Nonzero Structure of Matrix: 14

Large max nonzeros 
per row; low SpMV 

speedup

Three smallest 
matrices in test set. 

Very good speedup 
for matrices w/ 
small nnz/row.



How does the Krylov subspace (restart) size affect solve 
time?
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GMRES Double: Left bars
GMRES-IR: Right bars

Large Subspace:
(Less practical in reality.)
GMRES double fastest

Small Subspace:
GMRES-IR fastest



How does preconditioning affect GMRES-IR 
convergence?
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Preconditioned GMRES-IR convergence still follows convergence 
of GMRES Double!

Stretched2D1500:
• 2D Laplacian on Stretched Grid
• n = 2.25 million 

Polynomial Preconditioner:
• GMRES Polynomial 
• GMRES double: 

double precision poly preconditioner
• GMRES-IR: 

single precision poly preconditioner



Polynomial Preconditioning17

Polynomial preconditioning shifts 
main expense to SpMV rather than 
dense orthogonalization kernels. 

**For polynomial preconditioning details, see:
Jennifer Loe, Erik Boman, and Heidi Thornquist. Polynomial Preconditioned GMRES in Trilinos: Practical Considerations for High-Performance 
Computing 

LEFT: GMRES double w/ fp64 
polynomial preconditioner. 
MIDDLE: GMRES double w/ fp32 
polynomial preconditioner. 
RIGHT: GMRES-IR w/ fp32 
polynomial preconditioner.



Results from SuiteSparse Matrices:18

 *prec column: 
p = polynomial prec w/ 
degree
j = Jacobi prec w/ block size

Example PDE stencil 
problems from 
previous slides. 



Results from SuiteSparse Matrices:19

 *prec column: 
p = polynomial prec w/ 
degree
j = Jacobi prec w/ block size

Quickly converging 
problems; not much 
room for speedup 
from GMRES-IR. 



Results from SuiteSparse Matrices:20

 *prec column: 
p = polynomial prec w/ 
degree
j = Jacobi prec w/ block size

Right-hand side 
made more difficult 

convergence. 



Results from SuiteSparse Matrices:21

 *prec column: 
p = polynomial prec w/ 
degree
j = Jacobi prec w/ block size

Very good speedup 
for SuiteSparse test 

problems!



Future Work:

•Implement GMRES-IR in Tpetra solvers in Belos package of Trilinos
•Make GMRES (double) with single precision preconditioning available in 
Tpetra Belos solvers. 

•Incorporate half precision computations (fp16 and bfloat16).
•Test performance on other (non-NVIDIA) GPU architectures- AMD and 
Intel.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of 
Science and the National Nuclear Security Administration.
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